
The Twig Book
generated on March 13, 2014

The Twig Book

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work
only under the same, similar or a compatible license. For any reuse or distribution, you must make
clear to others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

Contents at a Glance

Introduction ...5
Twig for Template Designers...7
Twig for Developers ..20
Extending Twig ..29
Twig Internals...43
Recipes ...46
Coding Standards ...55
autoescape ..57

block ...59

filter..60

do ...61

embed ...62

extends..66

flush ...71

for ...72

from ...76

if ...77

import..78

include..80

macro ...82

sandbox..84

set ...85

spaceless ..87

use ...88

verbatim ..91

abs ...92

batch ...93

capitalize ..94

convert_encoding ...95

date ...96

date_modify...98

default..99

escape.. 100

first ... 102

format.. 103

PDF brought to you by
generated on March 13, 2014

Contents at a Glance | iii

http://sensiolabs.com

join ... 104

json_encode... 105

keys ... 106

last ... 107

length.. 108

lower ... 109

nl2br ... 110

number_format ... 111

merge ... 112

upper ... 113

raw ... 114

replace.. 115

reverse.. 116

round ... 118

slice ... 119

sort ... 121

split ... 122

striptags .. 124

title ... 125

trim ... 126

url_encode .. 127

attribute .. 128

block ... 129

constant .. 130

cycle ... 131

date ... 132

dump ... 134

include.. 136

max ... 138

min ... 139

parent.. 140

random.. 141

range ... 142

source.. 144

template_from_string .. 145

constant .. 146

defined.. 147

divisible by... 148

empty ... 149

even ... 150

iterable .. 151

null ... 152

odd ... 153

same as.. 154

Installation ... 155
Deprecated Features.. 158

iv | Contents at a Glance Contents at a Glance | 4

Listing 1-1

Chapter 1

Introduction

This is the documentation for Twig, the flexible, fast, and secure template engine for PHP.

If you have any exposure to other text-based template languages, such as Smarty, Django, or Jinja,
you should feel right at home with Twig. It's both designer and developer friendly by sticking to PHP's
principles and adding functionality useful for templating environments.

The key-features are...

• Fast: Twig compiles templates down to plain optimized PHP code. The overhead compared to
regular PHP code was reduced to the very minimum.

• Secure: Twig has a sandbox mode to evaluate untrusted template code. This allows Twig to be
used as a template language for applications where users may modify the template design.

• Flexible: Twig is powered by a flexible lexer and parser. This allows the developer to define its
own custom tags and filters, and create its own DSL.

Prerequisites
Twig needs at least PHP 5.2.4 to run.

Installation
The recommended way to install Twig is via Composer:

1 composer require twig/twig:1.*

To learn more about the other installation methods, read the installation chapter; it also explains
how to install the Twig C extension.

PDF brought to you by
generated on March 13, 2014

Chapter 1: Introduction | 5

http://sensiolabs.com

Listing 1-2

Listing 1-3

Listing 1-4

Basic API Usage
This section gives you a brief introduction to the PHP API for Twig.

1
2
3
4
5
6

require_once '/path/to/vendor/autoload.php';

$loader = new Twig_Loader_String();
$twig = new Twig_Environment($loader);

echo $twig->render('Hello {{ name }}!', array('name' => 'Fabien'));

Twig uses a loader (Twig_Loader_String) to locate templates, and an environment (Twig_Environment)
to store the configuration.

The render() method loads the template passed as a first argument and renders it with the variables
passed as a second argument.

As templates are generally stored on the filesystem, Twig also comes with a filesystem loader:

1
2
3
4
5
6

$loader = new Twig_Loader_Filesystem('/path/to/templates');
$twig = new Twig_Environment($loader, array(

'cache' => '/path/to/compilation_cache',
));

echo $twig->render('index.html', array('name' => 'Fabien'));

If you are not using Composer, use the Twig built-in autoloader:

1
2

require_once '/path/to/lib/Twig/Autoloader.php';
Twig_Autoloader::register();

PDF brought to you by
generated on March 13, 2014

Chapter 1: Introduction | 6

http://sensiolabs.com

Listing 2-1

Chapter 2

Twig for Template Designers

This document describes the syntax and semantics of the template engine and will be most useful as
reference to those creating Twig templates.

Synopsis
A template is simply a text file. It can generate any text-based format (HTML, XML, CSV, LaTeX, etc.).
It doesn't have a specific extension, .html or .xml are just fine.

A template contains variables or expressions, which get replaced with values when the template is
evaluated, and tags, which control the logic of the template.

Below is a minimal template that illustrates a few basics. We will cover the details later on:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

<!DOCTYPE html>
<html>

<head>
<title>My Webpage</title>

</head>
<body>

<ul id="navigation">
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

<h1>My Webpage</h1>
{{ a_variable }}

</body>
</html>

There are two kinds of delimiters: {% ... %} and {{ ... }}. The first one is used to execute statements
such as for-loops, the latter prints the result of an expression to the template.

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 7

http://sensiolabs.com

Listing 2-2

Listing 2-3

IDEs Integration
Many IDEs support syntax highlighting and auto-completion for Twig:

• Textmate via the Twig bundle1

• Vim via the Jinja syntax plugin2 or the vim-twig plugin3

• Netbeans via the Twig syntax plugin4 (until 7.1, native as of 7.2)
• PhpStorm (native as of 2.1)
• Eclipse via the Twig plugin5

• Sublime Text via the Twig bundle6

• GtkSourceView via the Twig language definition7 (used by gedit and other projects)
• Coda and SubEthaEdit via the Twig syntax mode8

• Coda 2 via the other Twig syntax mode9

• Komodo and Komodo Edit via the Twig highlight/syntax check mode
• Notepad++ via the Notepad++ Twig Highlighter10

• Emacs via web-mode.el11

Variables
The application passes variables to the templates you can mess around in the template. Variables may
have attributes or elements on them you can access too. How a variable looks like heavily depends on the
application providing those.

You can use a dot (.) to access attributes of a variable (methods or properties of a PHP object, or items
of a PHP array), or the so-called "subscript" syntax ([]):

1
2

{{ foo.bar }}
{{ foo['bar'] }}

When the attribute contains special characters (like - that would be interpreted as the minus operator),
use the attribute function instead to access the variable attribute:

1
2

{# equivalent to the non-working foo.data-foo #}
{{ attribute(foo, 'data-foo') }}

It's important to know that the curly braces are not part of the variable but the print statement. If
you access variables inside tags don't put the braces around.

If a variable or attribute does not exist, you will get back a null value when the strict_variables
option is set to false, otherwise Twig will throw an error (see environment options).

1. https://github.com/Anomareh/PHP-Twig.tmbundle

2. http://jinja.pocoo.org/docs/integration/#vim

3. https://github.com/evidens/vim-twig

4. http://plugins.netbeans.org/plugin/37069/php-twig

5. https://github.com/pulse00/Twig-Eclipse-Plugin

6. https://github.com/Anomareh/PHP-Twig.tmbundle

7. https://github.com/gabrielcorpse/gedit-twig-template-language

8. https://github.com/bobthecow/Twig-HTML.mode

9. https://github.com/muxx/Twig-HTML.mode

10. https://github.com/Banane9/notepadplusplus-twig

11. http://web-mode.org/

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 8

http://sensiolabs.com

Listing 2-4

Listing 2-5

Listing 2-6

Implementation

For convenience sake foo.bar does the following things on the PHP layer:

• check if foo is an array and bar a valid element;
• if not, and if foo is an object, check that bar is a valid property;
• if not, and if foo is an object, check that bar is a valid method (even if bar is the

constructor - use __construct() instead);
• if not, and if foo is an object, check that getBar is a valid method;
• if not, and if foo is an object, check that isBar is a valid method;
• if not, return a null value.

foo['bar'] on the other hand only works with PHP arrays:

• check if foo is an array and bar a valid element;
• if not, return a null value.

If you want to get a dynamic attribute on a variable, use the attribute function instead.

Global Variables

The following variables are always available in templates:

• _self: references the current template;
• _context: references the current context;
• _charset: references the current charset.

Setting Variables

You can assign values to variables inside code blocks. Assignments use the set tag:

1
2
3

{% set foo = 'foo' %}
{% set foo = [1, 2] %}
{% set foo = {'foo': 'bar'} %}

Filters
Variables can be modified by filters. Filters are separated from the variable by a pipe symbol (|) and
may have optional arguments in parentheses. Multiple filters can be chained. The output of one filter is
applied to the next.

The following example removes all HTML tags from the name and title-cases it:

1 {{ name|striptags|title }}

Filters that accept arguments have parentheses around the arguments. This example will join a list by
commas:

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 9

http://sensiolabs.com

Listing 2-7

Listing 2-8

Listing 2-9

Listing 2-10

Listing 2-11

1 {{ list|join(', ') }}

To apply a filter on a section of code, wrap it with the filter tag:

1
2
3

{% filter upper %}
This text becomes uppercase

{% endfilter %}

Go to the filters page to learn more about the built-in filters.

Functions
Functions can be called to generate content. Functions are called by their name followed by parentheses
(()) and may have arguments.

For instance, the range function returns a list containing an arithmetic progression of integers:

1
2
3

{% for i in range(0, 3) %}
{{ i }},

{% endfor %}

Go to the functions page to learn more about the built-in functions.

Named Arguments
New in version 1.12: Support for named arguments was added in Twig 1.12.

1
2
3

{% for i in range(low=1, high=10, step=2) %}
{{ i }},

{% endfor %}

Using named arguments makes your templates more explicit about the meaning of the values you pass as
arguments:

1
2
3
4
5

{{ data|convert_encoding('UTF-8', 'iso-2022-jp') }}

{# versus #}

{{ data|convert_encoding(from='iso-2022-jp', to='UTF-8') }}

Named arguments also allow you to skip some arguments for which you don't want to change the default
value:

1
2
3
4
5

{# the first argument is the date format, which defaults to the global date format if null
is passed #}
{{ "now"|date(null, "Europe/Paris") }}

{# or skip the format value by using a named argument for the timezone #}
{{ "now"|date(timezone="Europe/Paris") }}

You can also use both positional and named arguments in one call, in which case positional arguments
must always come before named arguments:

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 10

http://sensiolabs.com

Listing 2-12

Listing 2-13

Listing 2-14

Listing 2-15

1 {{ "now"|date('d/m/Y H:i', timezone="Europe/Paris") }}

Each function and filter documentation page has a section where the names of all arguments are
listed when supported.

Control Structure
A control structure refers to all those things that control the flow of a program - conditionals (i.e.
if/elseif/else), for-loops, as well as things like blocks. Control structures appear inside {% ... %}
blocks.

For example, to display a list of users provided in a variable called users, use the for tag:

1
2
3
4
5
6

<h1>Members</h1>

{% for user in users %}
{{ user.username|e }}

{% endfor %}

The if tag can be used to test an expression:

1
2
3
4
5
6
7

{% if users|length > 0 %}

{% for user in users %}
{{ user.username|e }}

{% endfor %}

{% endif %}

Go to the tags page to learn more about the built-in tags.

Comments
To comment-out part of a line in a template, use the comment syntax {# ... #}. This is useful for
debugging or to add information for other template designers or yourself:

1
2
3
4
5

{# note: disabled template because we no longer use this
{% for user in users %}

...
{% endfor %}

#}

Including other Templates
The include tag is useful to include a template and return the rendered content of that template into the
current one:

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 11

http://sensiolabs.com

Listing 2-16

Listing 2-17

Listing 2-18

Listing 2-19

Listing 2-20

1 {% include 'sidebar.html' %}

Per default included templates are passed the current context.

The context that is passed to the included template includes variables defined in the template:

1
2
3

{% for box in boxes %}
{% include "render_box.html" %}

{% endfor %}

The included template render_box.html is able to access box.

The filename of the template depends on the template loader. For instance, the
Twig_Loader_Filesystem allows you to access other templates by giving the filename. You can access
templates in subdirectories with a slash:

1 {% include "sections/articles/sidebar.html" %}

This behavior depends on the application embedding Twig.

Template Inheritance
The most powerful part of Twig is template inheritance. Template inheritance allows you to build a base
"skeleton" template that contains all the common elements of your site and defines blocks that child
templates can override.

Sounds complicated but is very basic. It's easier to understand it by starting with an example.

Let's define a base template, base.html, which defines a simple HTML skeleton document that you
might use for a simple two-column page:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

<!DOCTYPE html>
<html>

<head>
{% block head %}

<link rel="stylesheet" href="style.css" />
<title>{% block title %}{% endblock %} - My Webpage</title>

{% endblock %}
</head>
<body>

<div id="content">{% block content %}{% endblock %}</div>
<div id="footer">

{% block footer %}
© Copyright 2011 by you.

{% endblock %}
</div>

</body>
</html>

In this example, the block tags define four blocks that child templates can fill in. All the block tag does is
to tell the template engine that a child template may override those portions of the template.

A child template might look like this:

1
2

{% extends "base.html" %}

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 12

http://sensiolabs.com

Listing 2-21

3
4
5
6
7
8
9

10
11
12
13
14
15

{% block title %}Index{% endblock %}
{% block head %}

{{ parent() }}
<style type="text/css">

.important { color: #336699; }
</style>

{% endblock %}
{% block content %}

<h1>Index</h1>
<p class="important">

Welcome to my awesome homepage.
</p>

{% endblock %}

The extends tag is the key here. It tells the template engine that this template "extends" another template.
When the template system evaluates this template, first it locates the parent. The extends tag should be
the first tag in the template.

Note that since the child template doesn't define the footer block, the value from the parent template is
used instead.

It's possible to render the contents of the parent block by using the parent function. This gives back the
results of the parent block:

1
2
3
4
5

{% block sidebar %}
<h3>Table Of Contents</h3>
...
{{ parent() }}

{% endblock %}

The documentation page for the extends tag describes more advanced features like block nesting,
scope, dynamic inheritance, and conditional inheritance.

Twig also supports multiple inheritance with the so called horizontal reuse with the help of the use
tag. This is an advanced feature hardly ever needed in regular templates.

HTML Escaping
When generating HTML from templates, there's always a risk that a variable will include characters that
affect the resulting HTML. There are two approaches: manually escaping each variable or automatically
escaping everything by default.

Twig supports both, automatic escaping is enabled by default.

Automatic escaping is only supported if the escaper extension has been enabled (which is the
default).

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 13

http://sensiolabs.com

Listing 2-22

Listing 2-23

Listing 2-24

Listing 2-25

Listing 2-26

Working with Manual Escaping

If manual escaping is enabled, it is your responsibility to escape variables if needed. What to escape? Any
variable you don't trust.

Escaping works by piping the variable through the escape or e filter:

1 {{ user.username|e }}

By default, the escape filter uses the html strategy, but depending on the escaping context, you might
want to explicitly use any other available strategies:

1
2
3
4

{{ user.username|e('js') }}
{{ user.username|e('css') }}
{{ user.username|e('url') }}
{{ user.username|e('html_attr') }}

Working with Automatic Escaping

Whether automatic escaping is enabled or not, you can mark a section of a template to be escaped or not
by using the autoescape tag:

1
2
3

{% autoescape %}
Everything will be automatically escaped in this block (using the HTML strategy)

{% endautoescape %}

By default, auto-escaping uses the html escaping strategy. If you output variables in other contexts, you
need to explicitly escape them with the appropriate escaping strategy:

1
2
3

{% autoescape 'js' %}
Everything will be automatically escaped in this block (using the JS strategy)

{% endautoescape %}

Escaping
It is sometimes desirable or even necessary to have Twig ignore parts it would otherwise handle as
variables or blocks. For example if the default syntax is used and you want to use {{ as raw string in the
template and not start a variable you have to use a trick.

The easiest way is to output the variable delimiter ({{) by using a variable expression:

1 {{ '{{' }}

For bigger sections it makes sense to mark a block verbatim.

Macros
New in version 1.12: Support for default argument values was added in Twig 1.12.

Macros are comparable with functions in regular programming languages. They are useful to reuse often
used HTML fragments to not repeat yourself.

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 14

http://sensiolabs.com

Listing 2-27

Listing 2-28

Listing 2-29

Listing 2-30

Listing 2-31

A macro is defined via the macro tag. Here is a small example (subsequently called forms.html) of a
macro that renders a form element:

1
2
3

{% macro input(name, value, type, size) %}
<input type="{{ type|default('text') }}" name="{{ name }}" value="{{ value|e }}"

size="{{ size|default(20) }}" />
{% endmacro %}

Macros can be defined in any template, and need to be "imported" via the import tag before being used:

1
2
3

{% import "forms.html" as forms %}

<p>{{ forms.input('username') }}</p>

Alternatively, you can import individual macro names from a template into the current namespace via
the from tag and optionally alias them:

1
2
3
4
5
6
7
8

{% from 'forms.html' import input as input_field %}

<dl>
<dt>Username</dt>
<dd>{{ input_field('username') }}</dd>
<dt>Password</dt>
<dd>{{ input_field('password', '', 'password') }}</dd>

</dl>

A default value can also be defined for macro arguments when not provided in a macro call:

1
2
3

{% macro input(name, value = "", type = "text", size = 20) %}
<input type="{{ type }}" name="{{ name }}" value="{{ value|e }}" size="{{ size }}" />

{% endmacro %}

Expressions
Twig allows expressions everywhere. These work very similar to regular PHP and even if you're not
working with PHP you should feel comfortable with it.

The operator precedence is as follows, with the lowest-precedence operators listed first: b-and, b-
xor, b-or, or, and, ==, !=, <, >, >=, <=, in, matches, starts with, ends with, .., +, -, ~, *, /, //,
%, is, **, |, [], and .:

1
2
3
4
5
6
7

{% set greeting = 'Hello ' %}
{% set name = 'Fabien' %}

{{ greeting ~ name|lower }} {# Hello fabien #}

{# use parenthesis to change precedence #}
{{ (greeting ~ name)|lower }} {# hello fabien #}

Literals

New in version 1.5: Support for hash keys as names and expressions was added in Twig 1.5.

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 15

http://sensiolabs.com

Listing 2-32

Listing 2-33

The simplest form of expressions are literals. Literals are representations for PHP types such as strings,
numbers, and arrays. The following literals exist:

• "Hello World": Everything between two double or single quotes is a string. They are useful
whenever you need a string in the template (for example as arguments to function calls, filters
or just to extend or include a template). A string can contain a delimiter if it is preceded by a
backslash (\) -- like in 'It\'s good'.

• 42 / 42.23: Integers and floating point numbers are created by just writing the number down.
If a dot is present the number is a float, otherwise an integer.

• ["foo", "bar"]: Arrays are defined by a sequence of expressions separated by a comma (,)
and wrapped with squared brackets ([]).

• {"foo": "bar"}: Hashes are defined by a list of keys and values separated by a comma (,) and
wrapped with curly braces ({}):

1
2
3
4
5
6
7
8
9

10
11

{# keys as string #}
{ 'foo': 'foo', 'bar': 'bar' }

{# keys as names (equivalent to the previous hash) -- as of Twig 1.5 #}
{ foo: 'foo', bar: 'bar' }

{# keys as integer #}
{ 2: 'foo', 4: 'bar' }

{# keys as expressions (the expression must be enclosed into parentheses) -- as
of Twig 1.5 #}
{ (1 + 1): 'foo', (a ~ 'b'): 'bar' }

• true / false: true represents the true value, false represents the false value.

• null: null represents no specific value. This is the value returned when a variable does not
exist. none is an alias for null.

Arrays and hashes can be nested:

1 {% set foo = [1, {"foo": "bar"}] %}

Using double-quoted or single-quoted strings has no impact on performance but string
interpolation is only supported in double-quoted strings.

Math

Twig allows you to calculate with values. This is rarely useful in templates but exists for completeness'
sake. The following operators are supported:

• +: Adds two objects together (the operands are casted to numbers). {{ 1 + 1 }} is 2.
• -: Subtracts the second number from the first one. {{ 3 - 2 }} is 1.
• /: Divides two numbers. The returned value will be a floating point number. {{ 1 / 2 }} is

{{ 0.5 }}.
• %: Calculates the remainder of an integer division. {{ 11 % 7 }} is 4.
• //: Divides two numbers and returns the floored integer result. {{ 20 // 7 }} is 2, {{ -20

// 7 }} is -3 (this is just syntactic sugar for the round filter).
• *: Multiplies the left operand with the right one. {{ 2 * 2 }} would return 4.
• **: Raises the left operand to the power of the right operand. {{ 2 ** 3 }} would return 8.

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 16

http://sensiolabs.com

Listing 2-34

Listing 2-35

Listing 2-36

Listing 2-37

Logic

You can combine multiple expressions with the following operators:

• and: Returns true if the left and the right operands are both true.
• or: Returns true if the left or the right operand is true.
• not: Negates a statement.
• (expr): Groups an expression.

Twig also support bitwise operators (b-and, b-xor, and b-or).

Comparisons

The following comparison operators are supported in any expression: ==, !=, <, >, >=, and <=.

You can also check if a string starts with or ends with another string:

1
2
3
4
5

{% if 'Fabien' starts with 'F' %}
{% endif %}

{% if 'Fabien' ends with 'n' %}
{% endif %}

For complex string comparisons, the matches operator allows you to use regular expressions12:

1
2

{% if phone matches '{^[\d\.]+$}' %}
{% endif %}

Containment Operator

The in operator performs containment test.

It returns true if the left operand is contained in the right:

1
2
3
4
5

{# returns true #}

{{ 1 in [1, 2, 3] }}

{{ 'cd' in 'abcde' }}

You can use this filter to perform a containment test on strings, arrays, or objects implementing
the Traversable interface.

To perform a negative test, use the not in operator:

12. http://php.net/manual/en/pcre.pattern.php

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 17

http://sensiolabs.com

Listing 2-38

Listing 2-39

Listing 2-40

Listing 2-41

1
2
3
4

{% if 1 not in [1, 2, 3] %}

{# is equivalent to #}
{% if not (1 in [1, 2, 3]) %}

Test Operator

The is operator performs tests. Tests can be used to test a variable against a common expression. The
right operand is name of the test:

1
2
3

{# find out if a variable is odd #}

{{ name is odd }}

Tests can accept arguments too:

1 {% if post.status is constant('Post::PUBLISHED') %}

Tests can be negated by using the is not operator:

1
2
3
4

{% if post.status is not constant('Post::PUBLISHED') %}

{# is equivalent to #}
{% if not (post.status is constant('Post::PUBLISHED')) %}

Go to the tests page to learn more about the built-in tests.

Other Operators

New in version 1.12.0: Support for the extended ternary operator was added in Twig 1.12.0.

The following operators are very useful but don't fit into any of the other categories:

• ..: Creates a sequence based on the operand before and after the operator (this is just syntactic
sugar for the range function).

• |: Applies a filter.

• ~: Converts all operands into strings and concatenates them. {{ "Hello " ~ name ~ "!" }}
would return (assuming name is 'John') Hello John!.

• ., []: Gets an attribute of an object.

• ?:: The ternary operator:

{{ foo ? 'yes' : 'no' }}

{# as of Twig 1.12.0 #}
{{ foo ?: 'no' }} is the same as {{ foo ? foo : 'no' }}
{{ foo ? 'yes' }} is the same as {{ foo ? 'yes' : '' }}

String Interpolation

New in version 1.5: String interpolation was added in Twig 1.5.

String interpolation (#{expression}) allows any valid expression to appear within a double-quoted string.
The result of evaluating that expression is inserted into the string:

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 18

http://sensiolabs.com

Listing 2-42

Listing 2-43

Listing 2-44

Listing 2-45

1
2

{{ "foo #{bar} baz" }}
{{ "foo #{1 + 2} baz" }}

Whitespace Control
New in version 1.1: Tag level whitespace control was added in Twig 1.1.

The first newline after a template tag is removed automatically (like in PHP.) Whitespace is not further
modified by the template engine, so each whitespace (spaces, tabs, newlines etc.) is returned unchanged.

Use the spaceless tag to remove whitespace between HTML tags:

1
2
3
4
5
6
7

{% spaceless %}
<div>

foo bar
</div>

{% endspaceless %}

{# output will be <div>foo bar</div> #}

In addition to the spaceless tag you can also control whitespace on a per tag level. By using the whitespace
control modifier on your tags, you can trim leading and or trailing whitespace:

1
2
3
4
5
6
7

{% set value = 'no spaces' %}
{#- No leading/trailing whitespace -#}
{%- if true -%}

{{- value -}}
{%- endif -%}

{# output 'no spaces' #}

The above sample shows the default whitespace control modifier, and how you can use it to remove
whitespace around tags. Trimming space will consume all whitespace for that side of the tag. It is possible
to use whitespace trimming on one side of a tag:

1
2
3
4

{% set value = 'no spaces' %}
 {{- value }}

{# outputs 'no spaces ' #}

Extensions
Twig can be easily extended.

If you are looking for new tags, filters, or functions, have a look at the Twig official extension repository13.

If you want to create your own, read the Creating an Extension chapter.

13. http://github.com/fabpot/Twig-extensions

PDF brought to you by
generated on March 13, 2014

Chapter 2: Twig for Template Designers | 19

http://sensiolabs.com

Listing 3-1

Chapter 3

Twig for Developers

This chapter describes the API to Twig and not the template language. It will be most useful as reference
to those implementing the template interface to the application and not those who are creating Twig
templates.

Basics
Twig uses a central object called the environment (of class Twig_Environment). Instances of this class
are used to store the configuration and extensions, and are used to load templates from the file system or
other locations.

Most applications will create one Twig_Environment object on application initialization and use that to
load templates. In some cases it's however useful to have multiple environments side by side, if different
configurations are in use.

The simplest way to configure Twig to load templates for your application looks roughly like this:

1
2
3
4
5
6
7

require_once '/path/to/lib/Twig/Autoloader.php';
Twig_Autoloader::register();

$loader = new Twig_Loader_Filesystem('/path/to/templates');
$twig = new Twig_Environment($loader, array(

'cache' => '/path/to/compilation_cache',
));

This will create a template environment with the default settings and a loader that looks up the templates
in the /path/to/templates/ folder. Different loaders are available and you can also write your own if
you want to load templates from a database or other resources.

Notice that the second argument of the environment is an array of options. The cache option is a
compilation cache directory, where Twig caches the compiled templates to avoid the parsing phase
for sub-sequent requests. It is very different from the cache you might want to add for the evaluated
templates. For such a need, you can use any available PHP cache library.

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 20

http://sensiolabs.com

Listing 3-2

Listing 3-3

Listing 3-4

Listing 3-5

To load a template from this environment you just have to call the loadTemplate() method which then
returns a Twig_Template instance:

1 $template = $twig->loadTemplate('index.html');

To render the template with some variables, call the render() method:

1 echo $template->render(array('the' => 'variables', 'go' => 'here'));

The display() method is a shortcut to output the template directly.

You can also load and render the template in one fell swoop:

1 echo $twig->render('index.html', array('the' => 'variables', 'go' => 'here'));

Environment Options
When creating a new Twig_Environment instance, you can pass an array of options as the constructor
second argument:

1 $twig = new Twig_Environment($loader, array('debug' => true));

The following options are available:

• debug: When set to true, the generated templates have a __toString() method that you can
use to display the generated nodes (default to false).

• charset: The charset used by the templates (default to utf-8).
• base_template_class: The base template class to use for generated templates (default to

Twig_Template).
• cache: An absolute path where to store the compiled templates, or false to disable caching

(which is the default).
• auto_reload: When developing with Twig, it's useful to recompile the template whenever

the source code changes. If you don't provide a value for the auto_reload option, it will be
determined automatically based on the debug value.

• strict_variables: If set to false, Twig will silently ignore invalid variables (variables and or
attributes/methods that do not exist) and replace them with a null value. When set to true,
Twig throws an exception instead (default to false).

• autoescape: If set to true, auto-escaping will be enabled by default for all templates (default
to true). As of Twig 1.8, you can set the escaping strategy to use (html, js, false to disable).
As of Twig 1.9, you can set the escaping strategy to use (css, url, html_attr, or a PHP
callback that takes the template "filename" and must return the escaping strategy to use -- the
callback cannot be a function name to avoid collision with built-in escaping strategies).

• optimizations: A flag that indicates which optimizations to apply (default to -1 -- all
optimizations are enabled; set it to 0 to disable).

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 21

http://sensiolabs.com

Listing 3-6

Listing 3-7

Listing 3-8

Listing 3-9

Listing 3-10

Listing 3-11

Loaders
Loaders are responsible for loading templates from a resource such as the file system.

Compilation Cache

All template loaders can cache the compiled templates on the filesystem for future reuse. It speeds up
Twig a lot as templates are only compiled once; and the performance boost is even larger if you use a
PHP accelerator such as APC. See the cache and auto_reload options of Twig_Environment above for
more information.

Built-in Loaders

Here is a list of the built-in loaders Twig provides:

Twig_Loader_Filesystem

New in version 1.10: The prependPath() and support for namespaces were added in Twig 1.10.

Twig_Loader_Filesystem loads templates from the file system. This loader can find templates in folders
on the file system and is the preferred way to load them:

1 $loader = new Twig_Loader_Filesystem($templateDir);

It can also look for templates in an array of directories:

1 $loader = new Twig_Loader_Filesystem(array($templateDir1, $templateDir2));

With such a configuration, Twig will first look for templates in $templateDir1 and if they do not exist,
it will fallback to look for them in the $templateDir2.

You can add or prepend paths via the addPath() and prependPath() methods:

1
2

$loader->addPath($templateDir3);
$loader->prependPath($templateDir4);

The filesystem loader also supports namespaced templates. This allows to group your templates under
different namespaces which have their own template paths.

When using the setPaths(), addPath(), and prependPath() methods, specify the namespace as the
second argument (when not specified, these methods act on the "main" namespace):

1 $loader->addPath($templateDir, 'admin');

Namespaced templates can be accessed via the special @namespace_name/template_path notation:

1 $twig->render('@admin/index.html', array());

Twig_Loader_String

Twig_Loader_String loads templates from strings. It's a dummy loader as the template reference is the
template source code:

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 22

http://sensiolabs.com

Listing 3-12

Listing 3-13

1
2
3
4

$loader = new Twig_Loader_String();
$twig = new Twig_Environment($loader);

echo $twig->render('Hello {{ name }}!', array('name' => 'Fabien'));

This loader should only be used for unit testing as it has severe limitations: several tags, like extends or
include do not make sense to use as the reference to the template is the template source code itself.

Twig_Loader_Array

Twig_Loader_Array loads a template from a PHP array. It's passed an array of strings bound to template
names:

1
2
3
4
5
6

$loader = new Twig_Loader_Array(array(
'index.html' => 'Hello {{ name }}!',

));
$twig = new Twig_Environment($loader);

echo $twig->render('index.html', array('name' => 'Fabien'));

This loader is very useful for unit testing. It can also be used for small projects where storing all templates
in a single PHP file might make sense.

When using the Array or String loaders with a cache mechanism, you should know that a new
cache key is generated each time a template content "changes" (the cache key being the source code
of the template). If you don't want to see your cache grows out of control, you need to take care of
clearing the old cache file by yourself.

Twig_Loader_Chain

Twig_Loader_Chain delegates the loading of templates to other loaders:

1
2
3
4
5
6
7
8
9

10
11

$loader1 = new Twig_Loader_Array(array(
'base.html' => '{% block content %}{% endblock %}',

));
$loader2 = new Twig_Loader_Array(array(

'index.html' => '{% extends "base.twig" %}{% block content %}Hello {{ name }}{%
endblock %}',

'base.html' => 'Will never be loaded',
));

$loader = new Twig_Loader_Chain(array($loader1, $loader2));

$twig = new Twig_Environment($loader);

When looking for a template, Twig will try each loader in turn and it will return as soon as the template
is found. When rendering the index.html template from the above example, Twig will load it with
$loader2 but the base.html template will be loaded from $loader1.

Twig_Loader_Chain accepts any loader that implements Twig_LoaderInterface.

You can also add loaders via the addLoader() method.

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 23

http://sensiolabs.com

Listing 3-14

Listing 3-15

Create your own Loader

All loaders implement the Twig_LoaderInterface:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

interface Twig_LoaderInterface
{

/**
* Gets the source code of a template, given its name.
*
* @param string $name string The name of the template to load
*
* @return string The template source code
*/
function getSource($name);

/**
* Gets the cache key to use for the cache for a given template name.
*
* @param string $name string The name of the template to load
*
* @return string The cache key
*/
function getCacheKey($name);

/**
* Returns true if the template is still fresh.
*
* @param string $name The template name
* @param timestamp $time The last modification time of the cached template
*/
function isFresh($name, $time);

}

As an example, here is how the built-in Twig_Loader_String reads:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

class Twig_Loader_String implements Twig_LoaderInterface
{

public function getSource($name)
{
return $name;

}

public function getCacheKey($name)
{
return $name;

}

public function isFresh($name, $time)
{
return false;

}
}

The isFresh() method must return true if the current cached template is still fresh, given the last
modification time, or false otherwise.

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 24

http://sensiolabs.com

Listing 3-16

Listing 3-17

As of Twig 1.11.0, you can also implement Twig_ExistsLoaderInterface to make your loader
faster when used with the chain loader.

Using Extensions
Twig extensions are packages that add new features to Twig. Using an extension is as simple as using the
addExtension() method:

1 $twig->addExtension(new Twig_Extension_Sandbox());

Twig comes bundled with the following extensions:

• Twig_Extension_Core: Defines all the core features of Twig.
• Twig_Extension_Escaper: Adds automatic output-escaping and the possibility to escape/

unescape blocks of code.
• Twig_Extension_Sandbox: Adds a sandbox mode to the default Twig environment, making it

safe to evaluate untrusted code.
• Twig_Extension_Optimizer: Optimizes the node tree before compilation.

The core, escaper, and optimizer extensions do not need to be added to the Twig environment, as they
are registered by default.

Built-in Extensions
This section describes the features added by the built-in extensions.

Read the chapter about extending Twig to learn how to create your own extensions.

Core Extension

The core extension defines all the core features of Twig:

• Tags;
• Filters;
• Functions;
• Tests.

Escaper Extension

The escaper extension adds automatic output escaping to Twig. It defines a tag, autoescape, and a
filter, raw.

When creating the escaper extension, you can switch on or off the global output escaping strategy:

1
2

$escaper = new Twig_Extension_Escaper('html');
$twig->addExtension($escaper);

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 25

http://sensiolabs.com

Listing 3-18

Listing 3-19

Listing 3-20

Listing 3-21

Listing 3-22

Listing 3-23

If set to html, all variables in templates are escaped (using the html escaping strategy), except those using
the raw filter:

1 {{ article.to_html|raw }}

You can also change the escaping mode locally by using the autoescape tag (see the autoescape doc for
the syntax used before Twig 1.8):

1
2
3
4
5

{% autoescape 'html' %}
{{ var }}
{{ var|raw }} {# var won't be escaped #}
{{ var|escape }} {# var won't be double-escaped #}

{% endautoescape %}

The autoescape tag has no effect on included files.

The escaping rules are implemented as follows:

• Literals (integers, booleans, arrays, ...) used in the template directly as variables or filter
arguments are never automatically escaped:

1
2
3
4

{{ "Twig
" }} {# won't be escaped #}

{% set text = "Twig
" %}
{{ text }} {# will be escaped #}

• Expressions which the result is always a literal or a variable marked safe are never
automatically escaped:

{{ foo ? "Twig
" : "
Twig" }} {# won't be escaped #}

{% set text = "Twig
" %}
{{ foo ? text : "
Twig" }} {# will be escaped #}

{% set text = "Twig
" %}
{{ foo ? text|raw : "
Twig" }} {# won't be escaped #}

{% set text = "Twig
" %}
{{ foo ? text|escape : "
Twig" }} {# the result of the expression won't be
escaped #}

• Escaping is applied before printing, after any other filter is applied:

1 {{ var|upper }} {# is equivalent to {{ var|upper|escape }} #}

• The raw filter should only be used at the end of the filter chain:

1
2
3

{{ var|raw|upper }} {# will be escaped #}

{{ var|upper|raw }} {# won't be escaped #}

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 26

http://sensiolabs.com

Listing 3-24

Listing 3-25

Listing 3-26

Listing 3-27

Listing 3-28

• Automatic escaping is not applied if the last filter in the chain is marked safe for the current
context (e.g. html or js). escape and escape('html') are marked safe for HTML,
escape('js') is marked safe for JavaScript, raw is marked safe for everything.

1
2
3
4
5

{% autoescape 'js' %}
{{ var|escape('html') }} {# will be escaped for HTML and JavaScript #}
{{ var }} {# will be escaped for JavaScript #}
{{ var|escape('js') }} {# won't be double-escaped #}

{% endautoescape %}

Note that autoescaping has some limitations as escaping is applied on expressions after evaluation.
For instance, when working with concatenation, {{ foo|raw ~ bar }} won't give the expected
result as escaping is applied on the result of the concatenation, not on the individual variables (so,
the raw filter won't have any effect here).

Sandbox Extension

The sandbox extension can be used to evaluate untrusted code. Access to unsafe attributes and methods
is prohibited. The sandbox security is managed by a policy instance. By default, Twig comes with
one policy class: Twig_Sandbox_SecurityPolicy. This class allows you to white-list some tags, filters,
properties, and methods:

1
2
3
4
5
6
7
8
9

10

$tags = array('if');
$filters = array('upper');
$methods = array(

'Article' => array('getTitle', 'getBody'),
);
$properties = array(

'Article' => array('title', 'body'),
);
$functions = array('range');
$policy = new Twig_Sandbox_SecurityPolicy($tags, $filters, $methods, $properties,
$functions);

With the previous configuration, the security policy will only allow usage of the if tag, and the upper
filter. Moreover, the templates will only be able to call the getTitle() and getBody() methods on
Article objects, and the title and body public properties. Everything else won't be allowed and will
generate a Twig_Sandbox_SecurityError exception.

The policy object is the first argument of the sandbox constructor:

1
2

$sandbox = new Twig_Extension_Sandbox($policy);
$twig->addExtension($sandbox);

By default, the sandbox mode is disabled and should be enabled when including untrusted template code
by using the sandbox tag:

1
2
3

{% sandbox %}
{% include 'user.html' %}

{% endsandbox %}

You can sandbox all templates by passing true as the second argument of the extension constructor:

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 27

http://sensiolabs.com

Listing 3-29

Listing 3-30

1 $sandbox = new Twig_Extension_Sandbox($policy, true);

Optimizer Extension

The optimizer extension optimizes the node tree before compilation:

1 $twig->addExtension(new Twig_Extension_Optimizer());

By default, all optimizations are turned on. You can select the ones you want to enable by passing them
to the constructor:

1
2
3

$optimizer = new Twig_Extension_Optimizer(Twig_NodeVisitor_Optimizer::OPTIMIZE_FOR);

$twig->addExtension($optimizer);

Twig supports the following optimizations:

• Twig_NodeVisitor_Optimizer::OPTIMIZE_ALL, enables all optimizations (this is the default
value).

• Twig_NodeVisitor_Optimizer::OPTIMIZE_NONE, disables all optimizations. This reduces the
compilation time, but it can increase the execution time and the consumed memory.

• Twig_NodeVisitor_Optimizer::OPTIMIZE_FOR, optimizes the for tag by removing the loop
variable creation whenever possible.

• Twig_NodeVisitor_Optimizer::OPTIMIZE_RAW_FILTER, removes the raw filter whenever
possible.

• Twig_NodeVisitor_Optimizer::OPTIMIZE_VAR_ACCESS, simplifies the creation and access of
variables in the compiled templates whenever possible.

Exceptions
Twig can throw exceptions:

• Twig_Error: The base exception for all errors.
• Twig_Error_Syntax: Thrown to tell the user that there is a problem with the template syntax.
• Twig_Error_Runtime: Thrown when an error occurs at runtime (when a filter does not exist

for instance).
• Twig_Error_Loader: Thrown when an error occurs during template loading.
• Twig_Sandbox_SecurityError: Thrown when an unallowed tag, filter, or method is called in

a sandboxed template.

PDF brought to you by
generated on March 13, 2014

Chapter 3: Twig for Developers | 28

http://sensiolabs.com

Listing 4-1

Chapter 4

Extending Twig

This section describes how to extend Twig as of Twig 1.12. If you are using an older version, read
the legacy chapter instead.

Twig can be extended in many ways; you can add extra tags, filters, tests, operators, global variables, and
functions. You can even extend the parser itself with node visitors.

The first section of this chapter describes how to extend Twig easily. If you want to reuse your
changes in different projects or if you want to share them with others, you should then create an
extension as described in the following section.

When extending Twig without creating an extension, Twig won't be able to recompile your
templates when the PHP code is updated. To see your changes in real-time, either disable template
caching or package your code into an extension (see the next section of this chapter).

Before extending Twig, you must understand the differences between all the different possible extension
points and when to use them.

First, remember that Twig has two main language constructs:

• {{ }}: used to print the result of an expression evaluation;
• {% %}: used to execute statements.

To understand why Twig exposes so many extension points, let's see how to implement a Lorem ipsum
generator (it needs to know the number of words to generate).

You can use a lipsum tag:

1 {% lipsum 40 %}

That works, but using a tag for lipsum is not a good idea for at least three main reasons:

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 29

http://sensiolabs.com

Listing 4-2

Listing 4-3

Listing 4-4

Listing 4-5

Listing 4-6

Listing 4-7

• lipsum is not a language construct;

• The tag outputs something;

• The tag is not flexible as you cannot use it in an expression:

{{ 'some text' ~ {% lipsum 40 %} ~ 'some more text' }}

In fact, you rarely need to create tags; and that's good news because tags are the most complex extension
point of Twig.

Now, let's use a lipsum filter:

1 {{ 40|lipsum }}

Again, it works, but it looks weird. A filter transforms the passed value to something else but here we use
the value to indicate the number of words to generate (so, 40 is an argument of the filter, not the value
we want to transform).

Next, let's use a lipsum function:

1 {{ lipsum(40) }}

Here we go. For this specific example, the creation of a function is the extension point to use. And you
can use it anywhere an expression is accepted:

1
2
3

{{ 'some text' ~ lipsum(40) ~ 'some more text' }}

{% set lipsum = lipsum(40) %}

Last but not the least, you can also use a global object with a method able to generate lorem ipsum text:

1 {{ text.lipsum(40) }}

As a rule of thumb, use functions for frequently used features and global objects for everything else.

Keep in mind the following when you want to extend Twig:

What? Implementation difficulty? How
often?

When?

macro trivial frequent Content generation

global trivial frequent Helper object

function trivial frequent Content generation

filter trivial frequent Value transformation

tag complex rare DSL language construct

test trivial rare Boolean decision

operator trivial rare Values transformation

Globals
A global variable is like any other template variable, except that it's available in all templates and macros:

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 30

http://sensiolabs.com

Listing 4-8

Listing 4-9

Listing 4-10

Listing 4-11

Listing 4-12

Listing 4-13

Listing 4-14

1
2

$twig = new Twig_Environment($loader);
$twig->addGlobal('text', new Text());

You can then use the text variable anywhere in a template:

1 {{ text.lipsum(40) }}

Filters
Creating a filter is as simple as associating a name with a PHP callable:

1
2
3
4
5
6
7
8
9

10

// an anonymous function
$filter = new Twig_SimpleFilter('rot13', function ($string) {

return str_rot13($string);
});

// or a simple PHP function
$filter = new Twig_SimpleFilter('rot13', 'str_rot13');

// or a class method
$filter = new Twig_SimpleFilter('rot13', array('SomeClass', 'rot13Filter'));

The first argument passed to the Twig_SimpleFilter constructor is the name of the filter you will use in
templates and the second one is the PHP callable to associate with it.

Then, add the filter to your Twig environment:

1
2

$twig = new Twig_Environment($loader);
$twig->addFilter($filter);

And here is how to use it in a template:

1
2
3

{{ 'Twig'|rot13 }}

{# will output Gjvt #}

When called by Twig, the PHP callable receives the left side of the filter (before the pipe |) as the first
argument and the extra arguments passed to the filter (within parentheses ()) as extra arguments.

For instance, the following code:

1
2

{{ 'TWIG'|lower }}
{{ now|date('d/m/Y') }}

is compiled to something like the following:

1
2

<?php echo strtolower('TWIG') ?>
<?php echo twig_date_format_filter($now, 'd/m/Y') ?>

The Twig_SimpleFilter class takes an array of options as its last argument:

1 $filter = new Twig_SimpleFilter('rot13', 'str_rot13', $options);

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 31

http://sensiolabs.com

Listing 4-15

Listing 4-16

Listing 4-17

Listing 4-18

Listing 4-19

Environment-aware Filters

If you want to access the current environment instance in your filter, set the needs_environment option
to true; Twig will pass the current environment as the first argument to the filter call:

1
2
3
4
5
6

$filter = new Twig_SimpleFilter('rot13', function (Twig_Environment $env, $string) {
// get the current charset for instance
$charset = $env->getCharset();

return str_rot13($string);
}, array('needs_environment' => true));

Context-aware Filters

If you want to access the current context in your filter, set the needs_context option to true; Twig will
pass the current context as the first argument to the filter call (or the second one if needs_environment
is also set to true):

1
2
3
4
5
6
7

$filter = new Twig_SimpleFilter('rot13', function ($context, $string) {
// ...

}, array('needs_context' => true));

$filter = new Twig_SimpleFilter('rot13', function (Twig_Environment $env, $context,
$string) {

// ...
}, array('needs_context' => true, 'needs_environment' => true));

Automatic Escaping

If automatic escaping is enabled, the output of the filter may be escaped before printing. If your filter
acts as an escaper (or explicitly outputs HTML or JavaScript code), you will want the raw output to be
printed. In such a case, set the is_safe option:

1 $filter = new Twig_SimpleFilter('nl2br', 'nl2br', array('is_safe' => array('html')));

Some filters may need to work on input that is already escaped or safe, for example when adding (safe)
HTML tags to originally unsafe output. In such a case, set the pre_escape option to escape the input
data before it is run through your filter:

1 $filter = new Twig_SimpleFilter('somefilter', 'somefilter', array('pre_escape' => 'html',
'is_safe' => array('html')));

Dynamic Filters

A filter name containing the special * character is a dynamic filter as the * can be any string:

1
2
3

$filter = new Twig_SimpleFilter('*_path', function ($name, $arguments) {
// ...

});

The following filters will be matched by the above defined dynamic filter:

• product_path

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 32

http://sensiolabs.com

Listing 4-20

Listing 4-21

Listing 4-22

Listing 4-23

• category_path

A dynamic filter can define more than one dynamic parts:

1
2
3

$filter = new Twig_SimpleFilter('*_path_*', function ($name, $suffix, $arguments) {
// ...

});

The filter will receive all dynamic part values before the normal filter arguments, but after the
environment and the context. For instance, a call to 'foo'|a_path_b() will result in the following
arguments to be passed to the filter: ('a', 'b', 'foo').

Functions
Functions are defined in the exact same way as filters, but you need to create an instance of
Twig_SimpleFunction:

1
2
3
4
5

$twig = new Twig_Environment($loader);
$function = new Twig_SimpleFunction('function_name', function () {

// ...
});
$twig->addFunction($function);

Functions support the same features as filters, except for the pre_escape and preserves_safety
options.

Tests
Tests are defined in the exact same way as filters and functions, but you need to create an instance of
Twig_SimpleTest:

1
2
3
4
5

$twig = new Twig_Environment($loader);
$test = new Twig_SimpleTest('test_name', function () {

// ...
});
$twig->addTest($test);

Tests allow you to create custom application specific logic for evaluating boolean conditions. As a simple
example, let's create a Twig test that checks if objects are 'red':

1
2
3
4
5
6
7
8
9

10
11

$twig = new Twig_Environment($loader)
$test = new Twig_SimpleTest('red', function ($value) {

if (isset($value->color) && $value->color == 'red') {
return true;

}
if (isset($value->paint) && $value->paint == 'red') {

return true;
}
return false;

});
$twig->addTest($test);

Test functions should always return true/false.

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 33

http://sensiolabs.com

Listing 4-24

Listing 4-25

Listing 4-26

When creating tests you can use the node_class option to provide custom test compilation. This is
useful if your test can be compiled into PHP primitives. This is used by many of the tests built into Twig:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

$twig = new Twig_Environment($loader)
$test = new Twig_SimpleTest(

'odd',
null,
array('node_class' => 'Twig_Node_Expression_Test_Odd'));

$twig->addTest($test);

class Twig_Node_Expression_Test_Odd extends Twig_Node_Expression_Test
{

public function compile(Twig_Compiler $compiler)
{

$compiler
->raw('(')
->subcompile($this->getNode('node'))
->raw(' % 2 == 1')
->raw(')')

;
}

}

The above example shows how you can create tests that use a node class. The node class has access to
one sub-node called 'node'. This sub-node contains the value that is being tested. When the odd filter is
used in code such as:

1 {% if my_value is odd %}

The node sub-node will contain an expression of my_value. Node-based tests also have access to the
arguments node. This node will contain the various other arguments that have been provided to your
test.

Tags
One of the most exciting features of a template engine like Twig is the possibility to define new language
constructs. This is also the most complex feature as you need to understand how Twig's internals work.

Let's create a simple set tag that allows the definition of simple variables from within a template. The tag
can be used like follows:

1
2
3
4
5

{% set name = "value" %}

{{ name }}

{# should output value #}

The set tag is part of the Core extension and as such is always available. The built-in version is
slightly more powerful and supports multiple assignments by default (cf. the template designers
chapter for more information).

Three steps are needed to define a new tag:

• Defining a Token Parser class (responsible for parsing the template code);

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 34

http://sensiolabs.com

Listing 4-27

Listing 4-28

• Defining a Node class (responsible for converting the parsed code to PHP);
• Registering the tag.

Registering a new tag

Adding a tag is as simple as calling the addTokenParser method on the Twig_Environment instance:

1
2

$twig = new Twig_Environment($loader);
$twig->addTokenParser(new Project_Set_TokenParser());

Defining a Token Parser

Now, let's see the actual code of this class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

class Project_Set_TokenParser extends Twig_TokenParser
{

public function parse(Twig_Token $token)
{

$parser = $this->parser;
$stream = $parser->getStream();

$name = $stream->expect(Twig_Token::NAME_TYPE)->getValue();
$stream->expect(Twig_Token::OPERATOR_TYPE, '=');
$value = $parser->getExpressionParser()->parseExpression();
$stream->expect(Twig_Token::BLOCK_END_TYPE);

return new Project_Set_Node($name, $value, $token->getLine(), $this->getTag());
}

public function getTag()
{

return 'set';
}

}

The getTag() method must return the tag we want to parse, here set.

The parse() method is invoked whenever the parser encounters a set tag. It should return a Twig_Node
instance that represents the node (the Project_Set_Node calls creating is explained in the next section).

The parsing process is simplified thanks to a bunch of methods you can call from the token stream
($this->parser->getStream()):

• getCurrent(): Gets the current token in the stream.
• next(): Moves to the next token in the stream, but returns the old one.
• test($type), test($value) or test($type, $value): Determines whether the current token

is of a particular type or value (or both). The value may be an array of several possible values.
• expect($type[, $value[, $message]]): If the current token isn't of the given type/value a

syntax error is thrown. Otherwise, if the type and value are correct, the token is returned and
the stream moves to the next token.

• look(): Looks a the next token without consuming it.

Parsing expressions is done by calling the parseExpression() like we did for the set tag.

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 35

http://sensiolabs.com

Listing 4-29

Reading the existing TokenParser classes is the best way to learn all the nitty-gritty details of the
parsing process.

Defining a Node

The Project_Set_Node class itself is rather simple:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

class Project_Set_Node extends Twig_Node
{

public function __construct($name, Twig_Node_Expression $value, $line, $tag = null)
{

parent::__construct(array('value' => $value), array('name' => $name), $line, $tag);
}

public function compile(Twig_Compiler $compiler)
{

$compiler
->addDebugInfo($this)
->write('$context[\''.$this->getAttribute('name').'\'] = ')
->subcompile($this->getNode('value'))
->raw(";\n")

;
}

}

The compiler implements a fluid interface and provides methods that helps the developer generate
beautiful and readable PHP code:

• subcompile(): Compiles a node.
• raw(): Writes the given string as is.
• write(): Writes the given string by adding indentation at the beginning of each line.
• string(): Writes a quoted string.
• repr(): Writes a PHP representation of a given value (see Twig_Node_For for a usage

example).
• addDebugInfo(): Adds the line of the original template file related to the current node as a

comment.
• indent(): Indents the generated code (see Twig_Node_Block for a usage example).
• outdent(): Outdents the generated code (see Twig_Node_Block for a usage example).

Creating an Extension
The main motivation for writing an extension is to move often used code into a reusable class like adding
support for internationalization. An extension can define tags, filters, tests, operators, global variables,
functions, and node visitors.

Creating an extension also makes for a better separation of code that is executed at compilation time and
code needed at runtime. As such, it makes your code faster.

Most of the time, it is useful to create a single extension for your project, to host all the specific tags and
filters you want to add to Twig.

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 36

http://sensiolabs.com

Listing 4-30

When packaging your code into an extension, Twig is smart enough to recompile your templates
whenever you make a change to it (when auto_reload is enabled).

Before writing your own extensions, have a look at the Twig official extension repository:
http://github.com/fabpot/Twig-extensions1.

An extension is a class that implements the following interface:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

interface Twig_ExtensionInterface
{

/**
* Initializes the runtime environment.
*
* This is where you can load some file that contains filter functions for instance.
*
* @param Twig_Environment $environment The current Twig_Environment instance
*/
function initRuntime(Twig_Environment $environment);

/**
* Returns the token parser instances to add to the existing list.
*
* @return array An array of Twig_TokenParserInterface or

Twig_TokenParserBrokerInterface instances
*/
function getTokenParsers();

/**
* Returns the node visitor instances to add to the existing list.
*
* @return array An array of Twig_NodeVisitorInterface instances
*/
function getNodeVisitors();

/**
* Returns a list of filters to add to the existing list.
*
* @return array An array of filters
*/
function getFilters();

/**
* Returns a list of tests to add to the existing list.
*
* @return array An array of tests
*/
function getTests();

/**
* Returns a list of functions to add to the existing list.
*
* @return array An array of functions
*/

1. http://github.com/fabpot/Twig-extensions

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 37

http://sensiolabs.com

Listing 4-31

Listing 4-32

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

function getFunctions();

/**
* Returns a list of operators to add to the existing list.
*
* @return array An array of operators
*/
function getOperators();

/**
* Returns a list of global variables to add to the existing list.
*
* @return array An array of global variables
*/
function getGlobals();

/**
* Returns the name of the extension.
*
* @return string The extension name
*/
function getName();

}

To keep your extension class clean and lean, it can inherit from the built-in Twig_Extension class instead
of implementing the whole interface. That way, you just need to implement the getName() method as
the Twig_Extension provides empty implementations for all other methods.

The getName() method must return a unique identifier for your extension.

Now, with this information in mind, let's create the most basic extension possible:

1
2
3
4
5
6
7

class Project_Twig_Extension extends Twig_Extension
{

public function getName()
{

return 'project';
}

}

Of course, this extension does nothing for now. We will customize it in the next sections.

Twig does not care where you save your extension on the filesystem, as all extensions must be registered
explicitly to be available in your templates.

You can register an extension by using the addExtension() method on your main Environment object:

1
2

$twig = new Twig_Environment($loader);
$twig->addExtension(new Project_Twig_Extension());

Of course, you need to first load the extension file by either using require_once() or by using an
autoloader (see spl_autoload_register()2).

2. http://www.php.net/spl_autoload_register

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 38

http://sensiolabs.com

Listing 4-33

Listing 4-34

Listing 4-35

The bundled extensions are great examples of how extensions work.

Globals

Global variables can be registered in an extension via the getGlobals() method:

1
2
3
4
5
6
7
8
9

10
11

class Project_Twig_Extension extends Twig_Extension
{

public function getGlobals()
{

return array(
'text' => new Text(),

);
}

// ...
}

Functions

Functions can be registered in an extension via the getFunctions() method:

1
2
3
4
5
6
7
8
9

10
11

class Project_Twig_Extension extends Twig_Extension
{

public function getFunctions()
{

return array(
new Twig_SimpleFunction('lipsum', 'generate_lipsum'),

);
}

// ...
}

Filters

To add a filter to an extension, you need to override the getFilters() method. This method must return
an array of filters to add to the Twig environment:

1
2
3
4
5
6
7
8
9

10
11

class Project_Twig_Extension extends Twig_Extension
{

public function getFilters()
{

return array(
new Twig_SimpleFilter('rot13', 'str_rot13'),

);
}

// ...
}

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 39

http://sensiolabs.com

Listing 4-36

Listing 4-37

Listing 4-38

Tags

Adding a tag in an extension can be done by overriding the getTokenParsers() method. This method
must return an array of tags to add to the Twig environment:

1
2
3
4
5
6
7
8
9

class Project_Twig_Extension extends Twig_Extension
{

public function getTokenParsers()
{

return array(new Project_Set_TokenParser());
}

// ...
}

In the above code, we have added a single new tag, defined by the Project_Set_TokenParser class. The
Project_Set_TokenParser class is responsible for parsing the tag and compiling it to PHP.

Operators

The getOperators() methods lets you add new operators. Here is how to add !, ||, and && operators:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

class Project_Twig_Extension extends Twig_Extension
{

public function getOperators()
{

return array(
array(

'!' => array('precedence' => 50, 'class' =>
'Twig_Node_Expression_Unary_Not'),

),
array(

'||' => array('precedence' => 10, 'class' =>
'Twig_Node_Expression_Binary_Or', 'associativity' => Twig_ExpressionParser::OPERATOR_LEFT),

'&&' => array('precedence' => 15, 'class' =>
'Twig_Node_Expression_Binary_And', 'associativity' =>
Twig_ExpressionParser::OPERATOR_LEFT),

),
);

}

// ...
}

Tests

The getTests() method lets you add new test functions:

1
2
3
4
5
6
7
8

class Project_Twig_Extension extends Twig_Extension
{

public function getTests()
{

return array(
new Twig_SimpleTest('even', 'twig_test_even'),

);
}

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 40

http://sensiolabs.com

Listing 4-39

Listing 4-40

9
10
11

// ...
}

Overloading
To overload an already defined filter, test, operator, global variable, or function, re-define it in an
extension and register it as late as possible (order matters):

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

class MyCoreExtension extends Twig_Extension
{

public function getFilters()
{

return array(
new Twig_SimpleFilter('date', array($this, 'dateFilter')),

);
}

public function dateFilter($timestamp, $format = 'F j, Y H:i')
{

// do something different from the built-in date filter
}

public function getName()
{

return 'project';
}

}

$twig = new Twig_Environment($loader);
$twig->addExtension(new MyCoreExtension());

Here, we have overloaded the built-in date filter with a custom one.

If you do the same on the Twig_Environment itself, beware that it takes precedence over any other
registered extensions:

1
2
3
4
5
6
7

$twig = new Twig_Environment($loader);
$twig->addFilter(new Twig_SimpleFilter('date', function ($timestamp, $format = 'F j, Y
H:i') {

// do something different from the built-in date filter
}));
// the date filter will come from the above registration, not
// from the registered extension below
$twig->addExtension(new MyCoreExtension());

Note that overloading the built-in Twig elements is not recommended as it might be confusing.

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 41

http://sensiolabs.com

Listing 4-41

Listing 4-42

Testing an Extension

Functional Tests

You can create functional tests for extensions simply by creating the following file structure in your test
directory:

1
2
3
4
5
6
7
8
9

10
11

Fixtures/
filters/

foo.test
bar.test

functions/
foo.test
bar.test

tags/
foo.test
bar.test

IntegrationTest.php

The IntegrationTest.php file should look like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

class Project_Tests_IntegrationTest extends Twig_Test_IntegrationTestCase
{

public function getExtensions()
{

return array(
new Project_Twig_Extension1(),
new Project_Twig_Extension2(),

);
}

public function getFixturesDir()
{

return dirname(__FILE__).'/Fixtures/';
}

}

Fixtures examples can be found within the Twig repository tests/Twig/Fixtures3 directory.

Node Tests

Testing the node visitors can be complex, so extend your test cases from Twig_Test_NodeTestCase.
Examples can be found in the Twig repository tests/Twig/Node4 directory.

3. https://github.com/fabpot/Twig/tree/master/test/Twig/Tests/Fixtures

4. https://github.com/fabpot/Twig/tree/master/test/Twig/Tests/Node

PDF brought to you by
generated on March 13, 2014

Chapter 4: Extending Twig | 42

http://sensiolabs.com

Chapter 5

Twig Internals

Twig is very extensible and you can easily hack it. Keep in mind that you should probably try to create an
extension before hacking the core, as most features and enhancements can be handled with extensions.
This chapter is also useful for people who want to understand how Twig works under the hood.

How does Twig work?
The rendering of a Twig template can be summarized into four key steps:

• Load the template: If the template is already compiled, load it and go to the evaluation step,
otherwise:

• First, the lexer tokenizes the template source code into small pieces for easier
processing;

• Then, the parser converts the token stream into a meaningful tree of nodes (the
Abstract Syntax Tree);

• Eventually, the compiler transforms the AST into PHP code.

• Evaluate the template: It basically means calling the display() method of the compiled
template and passing it the context.

The Lexer
The lexer tokenizes a template source code into a token stream (each token is an instance of Twig_Token,
and the stream is an instance of Twig_TokenStream). The default lexer recognizes 13 different token
types:

• Twig_Token::BLOCK_START_TYPE, Twig_Token::BLOCK_END_TYPE: Delimiters for blocks ({%
%})

• Twig_Token::VAR_START_TYPE, Twig_Token::VAR_END_TYPE: Delimiters for variables ({{ }})
• Twig_Token::TEXT_TYPE: A text outside an expression;
• Twig_Token::NAME_TYPE: A name in an expression;
• Twig_Token::NUMBER_TYPE: A number in an expression;

PDF brought to you by
generated on March 13, 2014

Chapter 5: Twig Internals | 43

http://sensiolabs.com

Listing 5-1

Listing 5-2

Listing 5-3

Listing 5-4

Listing 5-5

Listing 5-6

Listing 5-7

• Twig_Token::STRING_TYPE: A string in an expression;
• Twig_Token::OPERATOR_TYPE: An operator;
• Twig_Token::PUNCTUATION_TYPE: A punctuation sign;
• Twig_Token::INTERPOLATION_START_TYPE, Twig_Token::INTERPOLATION_END_TYPE (as of

Twig 1.5): Delimiters for string interpolation;
• Twig_Token::EOF_TYPE: Ends of template.

You can manually convert a source code into a token stream by calling the tokenize() method of an
environment:

1 $stream = $twig->tokenize($source, $identifier);

As the stream has a __toString() method, you can have a textual representation of it by echoing the
object:

1 echo $stream."\n";

Here is the output for the Hello {{ name }} template:

1
2
3
4
5

TEXT_TYPE(Hello)
VAR_START_TYPE()
NAME_TYPE(name)
VAR_END_TYPE()
EOF_TYPE()

The default lexer (Twig_Lexer) can be changed by calling the setLexer() method:

1 $twig->setLexer($lexer);

The Parser
The parser converts the token stream into an AST (Abstract Syntax Tree), or a node tree (an instance
of Twig_Node_Module). The core extension defines the basic nodes like: for, if, ... and the expression
nodes.

You can manually convert a token stream into a node tree by calling the parse() method of an
environment:

1 $nodes = $twig->parse($stream);

Echoing the node object gives you a nice representation of the tree:

1 echo $nodes."\n";

Here is the output for the Hello {{ name }} template:

1
2
3
4

Twig_Node_Module(
Twig_Node_Text(Hello)
Twig_Node_Print(

Twig_Node_Expression_Name(name)

PDF brought to you by
generated on March 13, 2014

Chapter 5: Twig Internals | 44

http://sensiolabs.com

Listing 5-8

Listing 5-9

Listing 5-10

Listing 5-11

5
6

)
)

The default parser (Twig_TokenParser) can be changed by calling the setParser() method:

1 $twig->setParser($parser);

The Compiler
The last step is done by the compiler. It takes a node tree as an input and generates PHP code usable for
runtime execution of the template.

You can manually compile a node tree to PHP code with the compile() method of an environment:

1 $php = $twig->compile($nodes);

The generated template for a Hello {{ name }} template reads as follows (the actual output can differ
depending on the version of Twig you are using):

1
2
3
4
5
6
7
8
9

10
11
12

/* Hello {{ name }} */
class __TwigTemplate_1121b6f109fe93ebe8c6e22e3712bceb extends Twig_Template
{

protected function doDisplay(array $context, array $blocks = array())
{

// line 1
echo "Hello ";
echo twig_escape_filter($this->env, $this->getContext($context, "name"), "ndex",

null, true);
}

// some more code
}

The default compiler (Twig_Compiler) can be changed by calling the setCompiler() method:

1 $twig->setCompiler($compiler);

PDF brought to you by
generated on March 13, 2014

Chapter 5: Twig Internals | 45

http://sensiolabs.com

Listing 6-1

Listing 6-2

Listing 6-3

Chapter 6

Recipes

Making a Layout conditional
Working with Ajax means that the same content is sometimes displayed as is, and sometimes decorated
with a layout. As Twig layout template names can be any valid expression, you can pass a variable that
evaluates to true when the request is made via Ajax and choose the layout accordingly:

1
2
3
4
5

{% extends request.ajax ? "base_ajax.html" : "base.html" %}

{% block content %}
This is the content to be displayed.

{% endblock %}

Making an Include dynamic
When including a template, its name does not need to be a string. For instance, the name can depend on
the value of a variable:

1 {% include var ~ '_foo.html' %}

If var evaluates to index, the index_foo.html template will be rendered.

As a matter of fact, the template name can be any valid expression, such as the following:

1 {% include var|default('index') ~ '_foo.html' %}

Overriding a Template that also extends itself
A template can be customized in two different ways:

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 46

http://sensiolabs.com

Listing 6-4

Listing 6-5

Listing 6-6

Listing 6-7

• Inheritance: A template extends a parent template and overrides some blocks;
• Replacement: If you use the filesystem loader, Twig loads the first template it finds in a list of

configured directories; a template found in a directory replaces another one from a directory
further in the list.

But how do you combine both: replace a template that also extends itself (aka a template in a directory
further in the list)?

Let's say that your templates are loaded from both .../templates/mysite and .../templates/default
in this order. The page.twig template, stored in .../templates/default reads as follows:

1
2
3
4
5

{# page.twig #}
{% extends "layout.twig" %}

{% block content %}
{% endblock %}

You can replace this template by putting a file with the same name in .../templates/mysite. And if
you want to extend the original template, you might be tempted to write the following:

1
2

{# page.twig in .../templates/mysite #}
{% extends "page.twig" %} {# from .../templates/default #}

Of course, this will not work as Twig will always load the template from .../templates/mysite.

It turns out it is possible to get this to work, by adding a directory right at the end of your template
directories, which is the parent of all of the other directories: .../templates in our case. This has the
effect of making every template file within our system uniquely addressable. Most of the time you will
use the "normal" paths, but in the special case of wanting to extend a template with an overriding version
of itself we can reference its parent's full, unambiguous template path in the extends tag:

1
2

{# page.twig in .../templates/mysite #}
{% extends "default/page.twig" %} {# from .../templates #}

This recipe was inspired by the following Django wiki page: http://code.djangoproject.com/wiki/
ExtendingTemplates1

Customizing the Syntax
Twig allows some syntax customization for the block delimiters. It's not recommended to use this feature
as templates will be tied with your custom syntax. But for specific projects, it can make sense to change
the defaults.

To change the block delimiters, you need to create your own lexer object:

1
2
3
4
5
6

$twig = new Twig_Environment();

$lexer = new Twig_Lexer($twig, array(
'tag_comment' => array('{#', '#}'),
'tag_block' => array('{%', '%}'),
'tag_variable' => array('{{', '}}'),

1. http://code.djangoproject.com/wiki/ExtendingTemplates

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 47

http://sensiolabs.com

Listing 6-8

Listing 6-9

7
8
9

'interpolation' => array('#{', '}'),
));
$twig->setLexer($lexer);

Here are some configuration example that simulates some other template engines syntax:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

// Ruby erb syntax
$lexer = new Twig_Lexer($twig, array(

'tag_comment' => array('<%#', '%>'),
'tag_block' => array('<%', '%>'),
'tag_variable' => array('<%=', '%>'),

));

// SGML Comment Syntax
$lexer = new Twig_Lexer($twig, array(

'tag_comment' => array('<!--#', '-->'),
'tag_block' => array('<!--', '-->'),
'tag_variable' => array('${', '}'),

));

// Smarty like
$lexer = new Twig_Lexer($twig, array(

'tag_comment' => array('{*', '*}'),
'tag_block' => array('{', '}'),
'tag_variable' => array('{$', '}'),

));

Using dynamic Object Properties
When Twig encounters a variable like article.title, it tries to find a title public property in the
article object.

It also works if the property does not exist but is rather defined dynamically thanks to the magic __get()
method; you just need to also implement the __isset() magic method like shown in the following
snippet of code:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

class Article
{

public function __get($name)
{

if ('title' == $name) {
return 'The title';

}

// throw some kind of error
}

public function __isset($name)
{

if ('title' == $name) {
return true;

}

return false;

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 48

http://sensiolabs.com

Listing 6-10

Listing 6-11

Listing 6-12

Listing 6-13

19
20

}
}

Accessing the parent Context in Nested Loops
Sometimes, when using nested loops, you need to access the parent context. The parent context is always
accessible via the loop.parent variable. For instance, if you have the following template data:

1
2
3
4
5
6

$data = array(
'topics' => array(

'topic1' => array('Message 1 of topic 1', 'Message 2 of topic 1'),
'topic2' => array('Message 1 of topic 2', 'Message 2 of topic 2'),

),
);

And the following template to display all messages in all topics:

1
2
3
4
5
6

{% for topic, messages in topics %}
* {{ loop.index }}: {{ topic }}

{% for message in messages %}
- {{ loop.parent.loop.index }}.{{ loop.index }}: {{ message }}

{% endfor %}
{% endfor %}

The output will be similar to:

1
2
3
4
5
6

* 1: topic1
- 1.1: The message 1 of topic 1
- 1.2: The message 2 of topic 1

* 2: topic2
- 2.1: The message 1 of topic 2
- 2.2: The message 2 of topic 2

In the inner loop, the loop.parent variable is used to access the outer context. So, the index of the
current topic defined in the outer for loop is accessible via the loop.parent.loop.index variable.

Defining undefined Functions and Filters on the Fly
When a function (or a filter) is not defined, Twig defaults to throw a Twig_Error_Syntax exception.
However, it can also call a callback2 (any valid PHP callable) which should return a function (or a filter).

For filters, register callbacks with registerUndefinedFilterCallback(). For functions, use
registerUndefinedFunctionCallback():

1
2
3
4
5
6

// auto-register all native PHP functions as Twig functions
// don't try this at home as it's not secure at all!
$twig->registerUndefinedFunctionCallback(function ($name) {

if (function_exists($name)) {
return new Twig_Function_Function($name);

}

2. http://www.php.net/manual/en/function.is-callable.php

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 49

http://sensiolabs.com

Listing 6-14

Listing 6-15

Listing 6-16

7
8
9

return false;
});

If the callable is not able to return a valid function (or filter), it must return false.

If you register more than one callback, Twig will call them in turn until one does not return false.

As the resolution of functions and filters is done during compilation, there is no overhead when
registering these callbacks.

Validating the Template Syntax
When template code is providing by a third-party (through a web interface for instance), it might be
interesting to validate the template syntax before saving it. If the template code is stored in a $template
variable, here is how you can do it:

1
2
3
4
5
6
7

try {
$twig->parse($twig->tokenize($template));

// the $template is valid
} catch (Twig_Error_Syntax $e) {

// $template contains one or more syntax errors
}

If you iterate over a set of files, you can pass the filename to the tokenize() method to get the filename
in the exception message:

1
2
3
4
5
6
7
8
9

foreach ($files as $file) {
try {

$twig->parse($twig->tokenize($template, $file));

// the $template is valid
} catch (Twig_Error_Syntax $e) {

// $template contains one or more syntax errors
}

}

This method won't catch any sandbox policy violations because the policy is enforced during
template rendering (as Twig needs the context for some checks like allowed methods on objects).

Refreshing modified Templates when APC is enabled and apc.stat = 0
When using APC with apc.stat set to 0 and Twig cache enabled, clearing the template cache won't
update the APC cache. To get around this, one can extend Twig_Environment and force the update of
the APC cache when Twig rewrites the cache:

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 50

http://sensiolabs.com

Listing 6-17

Listing 6-18

Listing 6-19

1
2
3
4
5
6
7
8
9

10

class Twig_Environment_APC extends Twig_Environment
{

protected function writeCacheFile($file, $content)
{

parent::writeCacheFile($file, $content);

// Compile cached file into bytecode cache
apc_compile_file($file);

}
}

Reusing a stateful Node Visitor
When attaching a visitor to a Twig_Environment instance, Twig uses it to visit all templates it compiles.
If you need to keep some state information around, you probably want to reset it when visiting a new
template.

This can be easily achieved with the following code:

1
2
3
4
5
6
7
8
9

10
11
12
13

protected $someTemplateState = array();

public function enterNode(Twig_NodeInterface $node, Twig_Environment $env)
{

if ($node instanceof Twig_Node_Module) {
// reset the state as we are entering a new template
$this->someTemplateState = array();

}

// ...

return $node;
}

Using the Template name to set the default Escaping Strategy
New in version 1.8: This recipe requires Twig 1.8 or later.

The autoescape option determines the default escaping strategy to use when no escaping is applied on a
variable. When Twig is used to mostly generate HTML files, you can set it to html and explicitly change
it to js when you have some dynamic JavaScript files thanks to the autoescape tag:

1
2
3

{% autoescape 'js' %}
... some JS ...

{% endautoescape %}

But if you have many HTML and JS files, and if your template names follow some conventions, you can
instead determine the default escaping strategy to use based on the template name. Let's say that your
template names always end with .html for HTML files, .js for JavaScript ones, and .css for stylesheets,
here is how you can configure Twig:

1
2

class TwigEscapingGuesser
{

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 51

http://sensiolabs.com

Listing 6-20

Listing 6-21

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

function guess($filename)
{

// get the format
$format = substr($filename, strrpos($filename, '.') + 1);

switch ($format) {
case 'js':

return 'js';
case 'css':

return 'css';
case 'html':
default:

return 'html';
}

}
}

$loader = new Twig_Loader_Filesystem('/path/to/templates');
$twig = new Twig_Environment($loader, array(

'autoescape' => array(new TwigEscapingGuesser(), 'guess'),
));

This dynamic strategy does not incur any overhead at runtime as auto-escaping is done at compilation
time.

Using a Database to store Templates
If you are developing a CMS, templates are usually stored in a database. This recipe gives you a simple
PDO template loader you can use as a starting point for your own.

First, let's create a temporary in-memory SQLite3 database to work with:

1
2
3
4
5
6
7
8
9

10

$dbh = new PDO('sqlite::memory:');
$dbh->exec('CREATE TABLE templates (name STRING, source STRING, last_modified INTEGER)');
$base = '{% block content %}{% endblock %}';
$index = '
{% extends "base.twig" %}
{% block content %}Hello {{ name }}{% endblock %}
';
$now = time();
$dbh->exec("INSERT INTO templates (name, source, last_modified) VALUES ('base.twig',
'$base', $now)");
$dbh->exec("INSERT INTO templates (name, source, last_modified) VALUES ('index.twig',
'$index', $now)");

We have created a simple templates table that hosts two templates: base.twig and index.twig.

Now, let's define a loader able to use this database:

1
2
3
4
5
6
7

class DatabaseTwigLoader implements Twig_LoaderInterface, Twig_ExistsLoaderInterface
{

protected $dbh;

public function __construct(PDO $dbh)
{

$this->dbh = $dbh;

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 52

http://sensiolabs.com

Listing 6-22

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

}

public function getSource($name)
{

if (false === $source = $this->getValue('source', $name)) {
throw new Twig_Error_Loader(sprintf('Template "%s" does not exist.', $name));

}

return $source;
}

// Twig_ExistsLoaderInterface as of Twig 1.11
public function exists($name)
{

return $name === $this->getValue('name', $name);
}

public function getCacheKey($name)
{

return $name;
}

public function isFresh($name, $time)
{

if (false === $lastModified = $this->getValue('last_modified', $name)) {
return false;

}

return $lastModified <= $time;
}

protected function getValue($column, $name)
{

$sth = $this->dbh->prepare('SELECT '.$column.' FROM templates WHERE name = :name');
$sth->execute(array(':name' => (string) $name));

return $sth->fetchColumn();
}

}

Finally, here is an example on how you can use it:

1
2
3
4

$loader = new DatabaseTwigLoader($dbh);
$twig = new Twig_Environment($loader);

echo $twig->render('index.twig', array('name' => 'Fabien'));

Using different Template Sources
This recipe is the continuation of the previous one. Even if you store the contributed templates in a
database, you might want to keep the original/base templates on the filesystem. When templates can be
loaded from different sources, you need to use the Twig_Loader_Chain loader.

As you can see in the previous recipe, we reference the template in the exact same way as we would have
done it with a regular filesystem loader. This is the key to be able to mix and match templates coming

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 53

http://sensiolabs.com

Listing 6-23

from the database, the filesystem, or any other loader for that matter: the template name should be a
logical name, and not the path from the filesystem:

1
2
3
4
5
6
7
8
9

$loader1 = new DatabaseTwigLoader($dbh);
$loader2 = new Twig_Loader_Array(array(

'base.twig' => '{% block content %}{% endblock %}',
));
$loader = new Twig_Loader_Chain(array($loader1, $loader2));

$twig = new Twig_Environment($loader);

echo $twig->render('index.twig', array('name' => 'Fabien'));

Now that the base.twig templates is defined in an array loader, you can remove it from the database,
and everything else will still work as before.

PDF brought to you by
generated on March 13, 2014

Chapter 6: Recipes | 54

http://sensiolabs.com

Listing 7-1

Listing 7-2

Listing 7-3

Listing 7-4

Listing 7-5

Chapter 7

Coding Standards

When writing Twig templates, we recommend you to follow these official coding standards:

• Put one (and only one) space after the start of a delimiter ({{, {%, and {#) and before the end
of a delimiter (}}, %}, and #}):

1
2
3

{{ foo }}
{# comment #}
{% if foo %}{% endif %}

When using the whitespace control character, do not put any spaces between it and the
delimiter:

1
2
3

{{- foo -}}
{#- comment -#}
{%- if foo -%}{%- endif -%}

• Put one (and only one) space before and after the following operators: comparison operators
(==, !=, <, >, >=, <=), math operators (+, -, /, *, %, //, **), logic operators (not, and, or), ~, is,
in, and the ternary operator (?:):

{{ 1 + 2 }}
{{ foo ~ bar }}
{{ true ? true : false }}

• Put one (and only one) space after the : sign in hashes and , in arrays and hashes:

1
2

{{ [1, 2, 3] }}
{{ {'foo': 'bar'} }}

• Do not put any spaces after an opening parenthesis and before a closing parenthesis in
expressions:

1 {{ 1 + (2 * 3) }}

PDF brought to you by
generated on March 13, 2014

Chapter 7: Coding Standards | 55

http://sensiolabs.com

Listing 7-6

Listing 7-7

Listing 7-8

Listing 7-9

Listing 7-10

Listing 7-11

• Do not put any spaces before and after string delimiters:

1
2

{{ 'foo' }}
{{ "foo" }}

• Do not put any spaces before and after the following operators: |, ., .., []:

1
2
3
4

{{ foo|upper|lower }}
{{ user.name }}
{{ user[name] }}
{% for i in 1..12 %}{% endfor %}

• Do not put any spaces before and after the parenthesis used for filter and function calls:

1
2

{{ foo|default('foo') }}
{{ range(1..10) }}

• Do not put any spaces before and after the opening and the closing of arrays and hashes:

1
2

{{ [1, 2, 3] }}
{{ {'foo': 'bar'} }}

• Use lower cased and underscored variable names:

1
2

{% set foo = 'foo' %}
{% set foo_bar = 'foo' %}

• Indent your code inside tags (use the same indentation as the one used for the target language
of the rendered template):

1
2
3
4
5

{% block foo %}
{% if true %}

true
{% endif %}

{% endblock %}

PDF brought to you by
generated on March 13, 2014

Chapter 7: Coding Standards | 56

http://sensiolabs.com

Listing 8-1

Chapter 8

autoescape

Whether automatic escaping is enabled or not, you can mark a section of a template to be escaped or not
by using the autoescape tag:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

{# The following syntax works as of Twig 1.8 -- see the note below for previous versions #}

{% autoescape %}
Everything will be automatically escaped in this block
using the HTML strategy

{% endautoescape %}

{% autoescape 'html' %}
Everything will be automatically escaped in this block
using the HTML strategy

{% endautoescape %}

{% autoescape 'js' %}
Everything will be automatically escaped in this block
using the js escaping strategy

{% endautoescape %}

{% autoescape false %}
Everything will be outputted as is in this block

{% endautoescape %}

PDF brought to you by
generated on March 13, 2014

Chapter 8: autoescape | 57

http://sensiolabs.com

Listing 8-2

Listing 8-3

Before Twig 1.8, the syntax was different:

1
2
3
4
5
6
7
8
9

10
11
12
13

{% autoescape true %}
Everything will be automatically escaped in this block
using the HTML strategy

{% endautoescape %}

{% autoescape false %}
Everything will be outputted as is in this block

{% endautoescape %}

{% autoescape true js %}
Everything will be automatically escaped in this block
using the js escaping strategy

{% endautoescape %}

When automatic escaping is enabled everything is escaped by default except for values explicitly marked
as safe. Those can be marked in the template by using the raw filter:

1
2
3

{% autoescape %}
{{ safe_value|raw }}

{% endautoescape %}

Functions returning template data (like macros and parent) always return safe markup.

Twig is smart enough to not escape an already escaped value by the escape filter.

The chapter Twig for Developers gives more information about when and how automatic escaping
is applied.

PDF brought to you by
generated on March 13, 2014

Chapter 8: autoescape | 58

http://sensiolabs.com

Chapter 9

block

Blocks are used for inheritance and act as placeholders and replacements at the same time. They are
documented in detail in the documentation for the extends tag.

Block names should consist of alphanumeric characters, and underscores. Dashes are not permitted.

block, parent, use, extends

PDF brought to you by
generated on March 13, 2014

Chapter 9: block | 59

http://sensiolabs.com

Listing 10-1

Listing 10-2

Chapter 10

filter

Filter sections allow you to apply regular Twig filters on a block of template data. Just wrap the code in
the special filter section:

1
2
3

{% filter upper %}
This text becomes uppercase

{% endfilter %}

You can also chain filters:

1
2
3
4
5

{% filter lower|escape %}
SOME TEXT

{% endfilter %}

{# outputs "some text" #}

PDF brought to you by
generated on March 13, 2014

Chapter 10: filter | 60

http://sensiolabs.com

Listing 11-1

Chapter 11

do

New in version 1.5: The do tag was added in Twig 1.5.

The do tag works exactly like the regular variable expression ({{ ... }}) just that it doesn't print
anything:

1 {% do 1 + 2 %}

PDF brought to you by
generated on March 13, 2014

Chapter 11: do | 61

http://sensiolabs.com

Listing 12-1

Listing 12-2

Chapter 12

embed

New in version 1.8: The embed tag was added in Twig 1.8.

The embed tag combines the behaviour of include and extends. It allows you to include another template's
contents, just like include does. But it also allows you to override any block defined inside the included
template, like when extending a template.

Think of an embedded template as a "micro layout skeleton".

1
2
3
4
5
6
7
8
9

10

{% embed "teasers_skeleton.twig" %}
{# These blocks are defined in "teasers_skeleton.twig" #}
{# and we override them right here: #}
{% block left_teaser %}

Some content for the left teaser box
{% endblock %}
{% block right_teaser %}

Some content for the right teaser box
{% endblock %}

{% endembed %}

The embed tag takes the idea of template inheritance to the level of content fragments. While template
inheritance allows for "document skeletons", which are filled with life by child templates, the embed tag
allows you to create "skeletons" for smaller units of content and re-use and fill them anywhere you like.

Since the use case may not be obvious, let's look at a simplified example. Imagine a base template shared
by multiple HTML pages, defining a single block named "content":

1
2
3
4
5
6
7
8
9

10

┌─── page layout ─────────────────────┐
│ │
│ ┌── block "content" ──┐ │
│ │ │ │
│ │ │ │
│ │ (child template to │ │
│ │ put content here) │ │
│ │ │ │
│ │ │ │
│ └─────────────────────┘ │

PDF brought to you by
generated on March 13, 2014

Chapter 12: embed | 62

http://sensiolabs.com

Listing 12-3

Listing 12-4

11
12

│ │
└─────────────────────────────────────┘

Some pages ("foo" and "bar") share the same content structure - two vertically stacked boxes:

1
2
3
4
5
6
7
8
9

10
11
12

┌─── page layout ─────────────────────┐
│ │
│ ┌── block "content" ──┐ │
│ │ ┌─ block "top" ───┐ │ │
│ │ │ │ │ │
│ │ └─────────────────┘ │ │
│ │ ┌─ block "bottom" ┐ │ │
│ │ │ │ │ │
│ │ └─────────────────┘ │ │
│ └─────────────────────┘ │
│ │
└─────────────────────────────────────┘

While other pages ("boom" and "baz") share a different content structure - two boxes side by side:

1
2
3
4
5
6
7
8
9

10
11
12

┌─── page layout ─────────────────────┐
│ │
│ ┌── block "content" ──┐ │
│ │ │ │
│ │ ┌ block ┐ ┌ block ┐ │ │
│ │ │"left" │ │"right"│ │ │
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │
│ │ └───────┘ └───────┘ │ │
│ └─────────────────────┘ │
│ │
└─────────────────────────────────────┘

Without the embed tag, you have two ways to design your templates:

• Create two "intermediate" base templates that extend the master layout template: one
with vertically stacked boxes to be used by the "foo" and "bar" pages and another one
with side-by-side boxes for the "boom" and "baz" pages.

• Embed the markup for the top/bottom and left/right boxes into each page template
directly.

These two solutions do not scale well because they each have a major drawback:

• The first solution may indeed work for this simplified example. But imagine we add
a sidebar, which may again contain different, recurring structures of content. Now we
would need to create intermediate base templates for all occurring combinations of
content structure and sidebar structure... and so on.

• The second solution involves duplication of common code with all its negative
consequences: any change involves finding and editing all affected copies of the

PDF brought to you by
generated on March 13, 2014

Chapter 12: embed | 63

http://sensiolabs.com

Listing 12-5

Listing 12-6

Listing 12-7

structure, correctness has to be verified for each copy, copies may go out of sync by
careless modifications etc.

In such a situation, the embed tag comes in handy. The common layout code can live in a single base
template, and the two different content structures, let's call them "micro layouts" go into separate
templates which are embedded as necessary:

Page template foo.twig:

1
2
3
4
5
6
7
8
9

10
11
12
13

{% extends "layout_skeleton.twig" %}

{% block content %}
{% embed "vertical_boxes_skeleton.twig" %}

{% block top %}
Some content for the top box

{% endblock %}

{% block bottom %}
Some content for the bottom box

{% endblock %}
{% endembed %}

{% endblock %}

And here is the code for vertical_boxes_skeleton.twig:

1
2
3
4
5
6
7
8
9

10
11

<div class="top_box">
{% block top %}

Top box default content
{% endblock %}

</div>

<div class="bottom_box">
{% block bottom %}

Bottom box default content
{% endblock %}

</div>

The goal of the vertical_boxes_skeleton.twig template being to factor out the HTML markup for the
boxes.

The embed tag takes the exact same arguments as the include tag:

1
2
3
4
5
6
7
8
9

10
11

{% embed "base" with {'foo': 'bar'} %}
...

{% endembed %}

{% embed "base" with {'foo': 'bar'} only %}
...

{% endembed %}

{% embed "base" ignore missing %}
...

{% endembed %}

PDF brought to you by
generated on March 13, 2014

Chapter 12: embed | 64

http://sensiolabs.com

As embedded templates do not have "names", auto-escaping strategies based on the template
"filename" won't work as expected if you change the context (for instance, if you embed a CSS/
JavaScript template into an HTML one). In that case, explicitly set the default auto-escaping
strategy with the autoescape tag.

include

PDF brought to you by
generated on March 13, 2014

Chapter 12: embed | 65

http://sensiolabs.com

Listing 13-1

Chapter 13

extends

The extends tag can be used to extend a template from another one.

Like PHP, Twig does not support multiple inheritance. So you can only have one extends tag called
per rendering. However, Twig supports horizontal reuse.

Let's define a base template, base.html, which defines a simple HTML skeleton document:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

<!DOCTYPE html>
<html>

<head>
{% block head %}

<link rel="stylesheet" href="style.css" />
<title>{% block title %}{% endblock %} - My Webpage</title>

{% endblock %}
</head>
<body>

<div id="content">{% block content %}{% endblock %}</div>
<div id="footer">

{% block footer %}
© Copyright 2011 by you.

{% endblock %}
</div>

</body>
</html>

In this example, the block tags define four blocks that child templates can fill in.

All the block tag does is to tell the template engine that a child template may override those portions of
the template.

Child Template
A child template might look like this:

PDF brought to you by
generated on March 13, 2014

Chapter 13: extends | 66

http://sensiolabs.com

Listing 13-2

Listing 13-3

Listing 13-4

Listing 13-5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

{% extends "base.html" %}

{% block title %}Index{% endblock %}
{% block head %}

{{ parent() }}
<style type="text/css">

.important { color: #336699; }
</style>

{% endblock %}
{% block content %}

<h1>Index</h1>
<p class="important">

Welcome on my awesome homepage.
</p>

{% endblock %}

The extends tag is the key here. It tells the template engine that this template "extends" another template.
When the template system evaluates this template, first it locates the parent. The extends tag should be
the first tag in the template.

Note that since the child template doesn't define the footer block, the value from the parent template is
used instead.

You can't define multiple block tags with the same name in the same template. This limitation exists
because a block tag works in "both" directions. That is, a block tag doesn't just provide a hole to fill - it
also defines the content that fills the hole in the parent. If there were two similarly-named block tags in a
template, that template's parent wouldn't know which one of the blocks' content to use.

If you want to print a block multiple times you can however use the block function:

1
2
3

<title>{% block title %}{% endblock %}</title>
<h1>{{ block('title') }}</h1>
{% block body %}{% endblock %}

Parent Blocks
It's possible to render the contents of the parent block by using the parent function. This gives back the
results of the parent block:

1
2
3
4
5

{% block sidebar %}
<h3>Table Of Contents</h3>
...
{{ parent() }}

{% endblock %}

Named Block End-Tags
Twig allows you to put the name of the block after the end tag for better readability:

1
2
3

{% block sidebar %}
{% block inner_sidebar %}

...

PDF brought to you by
generated on March 13, 2014

Chapter 13: extends | 67

http://sensiolabs.com

Listing 13-6

Listing 13-7

Listing 13-8

Listing 13-9

Listing 13-10

Listing 13-11

4
5

{% endblock inner_sidebar %}
{% endblock sidebar %}

Of course, the name after the endblock word must match the block name.

Block Nesting and Scope
Blocks can be nested for more complex layouts. Per default, blocks have access to variables from outer
scopes:

1
2
3

{% for item in seq %}
{% block loop_item %}{{ item }}{% endblock %}

{% endfor %}

Block Shortcuts
For blocks with few content, it's possible to use a shortcut syntax. The following constructs do the same:

1
2
3

{% block title %}
{{ page_title|title }}

{% endblock %}

1 {% block title page_title|title %}

Dynamic Inheritance
Twig supports dynamic inheritance by using a variable as the base template:

1 {% extends some_var %}

If the variable evaluates to a Twig_Template object, Twig will use it as the parent template:

1
2
3
4
5

// {% extends layout %}

$layout = $twig->loadTemplate('some_layout_template.twig');

$twig->display('template.twig', array('layout' => $layout));

New in version 1.2: The possibility to pass an array of templates has been added in Twig 1.2.

You can also provide a list of templates that are checked for existence. The first template that exists will
be used as a parent:

1 {% extends ['layout.html', 'base_layout.html'] %}

PDF brought to you by
generated on March 13, 2014

Chapter 13: extends | 68

http://sensiolabs.com

Listing 13-12

Listing 13-13

Listing 13-14

Listing 13-15

Listing 13-16

Conditional Inheritance
As the template name for the parent can be any valid Twig expression, it's possible to make the
inheritance mechanism conditional:

1 {% extends standalone ? "minimum.html" : "base.html" %}

In this example, the template will extend the "minimum.html" layout template if the standalone variable
evaluates to true, and "base.html" otherwise.

How blocks work?
A block provides a way to change how a certain part of a template is rendered but it does not interfere in
any way with the logic around it.

Let's take the following example to illustrate how a block works and more importantly, how it does not
work:

1
2
3
4
5
6
7
8

{# base.twig #}

{% for post in posts %}
{% block post %}

<h1>{{ post.title }}</h1>
<p>{{ post.body }}</p>

{% endblock %}
{% endfor %}

If you render this template, the result would be exactly the same with or without the block tag. The
block inside the for loop is just a way to make it overridable by a child template:

1
2
3
4
5
6
7
8
9

10

{# child.twig #}

{% extends "base.twig" %}

{% block post %}
<article>

<header>{{ post.title }}</header>
<section>{{ post.text }}</section>

</article>
{% endblock %}

Now, when rendering the child template, the loop is going to use the block defined in the child template
instead of the one defined in the base one; the executed template is then equivalent to the following one:

1
2
3
4
5
6

{% for post in posts %}
<article>

<header>{{ post.title }}</header>
<section>{{ post.text }}</section>

</article>
{% endfor %}

Let's take another example: a block included within an if statement:

PDF brought to you by
generated on March 13, 2014

Chapter 13: extends | 69

http://sensiolabs.com

Listing 13-17

1
2
3
4
5
6
7

{% if posts is empty %}
{% block head %}

{{ parent() }}

<meta name="robots" content="noindex, follow">
{% endblock head %}

{% endif %}

Contrary to what you might think, this template does not define a block conditionally; it just makes
overridable by a child template the output of what will be rendered when the condition is true.

If you want the output to be displayed conditionally, use the following instead:

1
2
3
4
5
6
7

{% block head %}
{{ parent() }}

{% if posts is empty %}
<meta name="robots" content="noindex, follow">

{% endif %}
{% endblock head %}

block, block, parent, use

PDF brought to you by
generated on March 13, 2014

Chapter 13: extends | 70

http://sensiolabs.com

Listing 14-1

Chapter 14

flush

New in version 1.5: The flush tag was added in Twig 1.5.

The flush tag tells Twig to flush the output buffer:

1 {% flush %}

Internally, Twig uses the PHP flush1 function.

1. http://php.net/flush

PDF brought to you by
generated on March 13, 2014

Chapter 14: flush | 71

http://sensiolabs.com

Listing 15-1

Listing 15-2

Listing 15-3

Listing 15-4

Chapter 15

for

Loop over each item in a sequence. For example, to display a list of users provided in a variable called
users:

1
2
3
4
5
6

<h1>Members</h1>

{% for user in users %}
{{ user.username|e }}

{% endfor %}

A sequence can be either an array or an object implementing the Traversable interface.

If you do need to iterate over a sequence of numbers, you can use the .. operator:

1
2
3

{% for i in 0..10 %}
* {{ i }}

{% endfor %}

The above snippet of code would print all numbers from 0 to 10.

It can be also useful with letters:

1
2
3

{% for letter in 'a'..'z' %}
* {{ letter }}

{% endfor %}

The .. operator can take any expression at both sides:

PDF brought to you by
generated on March 13, 2014

Chapter 15: for | 72

http://sensiolabs.com

Listing 15-5

Listing 15-6

1
2
3

{% for letter in 'a'|upper..'z'|upper %}
* {{ letter }}

{% endfor %}

The loop variable
Inside of a for loop block you can access some special variables:

Variable Description

loop.index The current iteration of the loop. (1 indexed)

loop.index0 The current iteration of the loop. (0 indexed)

loop.revindex The number of iterations from the end of the loop (1 indexed)

loop.revindex0 The number of iterations from the end of the loop (0 indexed)

loop.first True if first iteration

loop.last True if last iteration

loop.length The number of items in the sequence

loop.parent The parent context

1
2
3

{% for user in users %}
{{ loop.index }} - {{ user.username }}

{% endfor %}

The loop.length, loop.revindex, loop.revindex0, and loop.last variables are only available
for PHP arrays, or objects that implement the Countable interface. They are also not available
when looping with a condition.

New in version 1.2: The if modifier support has been added in Twig 1.2.

Adding a condition
Unlike in PHP, it's not possible to break or continue in a loop. You can however filter the sequence
during iteration which allows you to skip items. The following example skips all the users which are not
active:

1
2
3
4
5

{% for user in users if user.active %}

{{ user.username|e }}
{% endfor %}

The advantage is that the special loop variable will count correctly thus not counting the users not
iterated over. Keep in mind that properties like loop.last will not be defined when using loop
conditions.

PDF brought to you by
generated on March 13, 2014

Chapter 15: for | 73

http://sensiolabs.com

Listing 15-7

Listing 15-8

Listing 15-9

Listing 15-10

Using the loop variable within the condition is not recommended as it will probably not be doing
what you expect it to. For instance, adding a condition like loop.index > 4 won't work as the
index is only incremented when the condition is true (so the condition will never match).

The else Clause
If no iteration took place because the sequence was empty, you can render a replacement block by using
else:

1
2
3
4
5
6
7

{% for user in users %}

{{ user.username|e }}
{% else %}

no user found
{% endfor %}

Iterating over Keys
By default, a loop iterates over the values of the sequence. You can iterate on keys by using the keys filter:

1
2
3
4
5
6

<h1>Members</h1>

{% for key in users|keys %}
{{ key }}

{% endfor %}

Iterating over Keys and Values
You can also access both keys and values:

1
2
3
4
5
6

<h1>Members</h1>

{% for key, user in users %}
{{ key }}: {{ user.username|e }}

{% endfor %}

Iterating over a Subset
You might want to iterate over a subset of values. This can be achieved using the slice filter:

1
2
3

<h1>Top Ten Members</h1>

{% for user in users|slice(0, 10) %}

PDF brought to you by
generated on March 13, 2014

Chapter 15: for | 74

http://sensiolabs.com

4
5
6

{{ user.username|e }}
{% endfor %}

PDF brought to you by
generated on March 13, 2014

Chapter 15: for | 75

http://sensiolabs.com

Chapter 16

from

The from tag imports macro names into the current namespace. The tag is documented in detail in the
documentation for the import tag.

macro, import

PDF brought to you by
generated on March 13, 2014

Chapter 16: from | 76

http://sensiolabs.com

Listing 17-1

Listing 17-2

Listing 17-3

Chapter 17

if

The if statement in Twig is comparable with the if statements of PHP.

In the simplest form you can use it to test if an expression evaluates to true:

1
2
3

{% if online == false %}
<p>Our website is in maintenance mode. Please, come back later.</p>

{% endif %}

You can also test if an array is not empty:

1
2
3
4
5
6
7

{% if users %}

{% for user in users %}
{{ user.username|e }}

{% endfor %}

{% endif %}

If you want to test if the variable is defined, use if users is defined instead.

For multiple branches elseif and else can be used like in PHP. You can use more complex
expressions there too:

1
2
3
4
5
6
7

{% if kenny.sick %}
Kenny is sick.

{% elseif kenny.dead %}
You killed Kenny! You bastard!!!

{% else %}
Kenny looks okay --- so far

{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 17: if | 77

http://sensiolabs.com

Listing 18-1

Listing 18-2

Listing 18-3

Chapter 18

import

Twig supports putting often used code into macros. These macros can go into different templates and get
imported from there.

There are two ways to import templates. You can import the complete template into a variable or request
specific macros from it.

Imagine we have a helper module that renders forms (called forms.html):

1
2
3
4
5
6
7

{% macro input(name, value, type, size) %}
<input type="{{ type|default('text') }}" name="{{ name }}" value="{{ value|e }}"

size="{{ size|default(20) }}" />
{% endmacro %}

{% macro textarea(name, value, rows, cols) %}
<textarea name="{{ name }}" rows="{{ rows|default(10) }}" cols="{{ cols|default(40)

}}">{{ value|e }}</textarea>
{% endmacro %}

The easiest and most flexible is importing the whole module into a variable. That way you can access the
attributes:

1
2
3
4
5
6
7
8
9

{% import 'forms.html' as forms %}

<dl>
<dt>Username</dt>
<dd>{{ forms.input('username') }}</dd>
<dt>Password</dt>
<dd>{{ forms.input('password', null, 'password') }}</dd>

</dl>
<p>{{ forms.textarea('comment') }}</p>

Alternatively you can import names from the template into the current namespace:

1
2

{% from 'forms.html' import input as input_field, textarea %}

PDF brought to you by
generated on March 13, 2014

Chapter 18: import | 78

http://sensiolabs.com

3
4
5
6
7
8
9

<dl>
<dt>Username</dt>
<dd>{{ input_field('username') }}</dd>
<dt>Password</dt>
<dd>{{ input_field('password', '', 'password') }}</dd>

</dl>
<p>{{ textarea('comment') }}</p>

To import macros from the current file, use the special _self variable for the source.

macro, from

PDF brought to you by
generated on March 13, 2014

Chapter 18: import | 79

http://sensiolabs.com

Listing 19-1

Listing 19-2

Listing 19-3

Listing 19-4

Chapter 19

include

The include statement includes a template and returns the rendered content of that file into the current
namespace:

1
2
3

{% include 'header.html' %}
Body

{% include 'footer.html' %}

Included templates have access to the variables of the active context.

If you are using the filesystem loader, the templates are looked for in the paths defined by it.

You can add additional variables by passing them after the with keyword:

1
2
3
4
5

{# template.html will have access to the variables from the current context and the
additional ones provided #}
{% include 'template.html' with {'foo': 'bar'} %}

{% set vars = {'foo': 'bar'} %}
{% include 'template.html' with vars %}

You can disable access to the context by appending the only keyword:

1
2

{# only the foo variable will be accessible #}
{% include 'template.html' with {'foo': 'bar'} only %}

1
2

{# no variables will be accessible #}
{% include 'template.html' only %}

When including a template created by an end user, you should consider sandboxing it. More
information in the Twig for Developers chapter and in the sandbox tag documentation.

The template name can be any valid Twig expression:

PDF brought to you by
generated on March 13, 2014

Chapter 19: include | 80

http://sensiolabs.com

Listing 19-5

Listing 19-6

Listing 19-7

Listing 19-8

1
2

{% include some_var %}
{% include ajax ? 'ajax.html' : 'not_ajax.html' %}

And if the expression evaluates to a Twig_Template object, Twig will use it directly:

1
2
3
4
5

// {% include template %}

$template = $twig->loadTemplate('some_template.twig');

$twig->loadTemplate('template.twig')->display(array('template' => $template));

New in version 1.2: The ignore missing feature has been added in Twig 1.2.

You can mark an include with ignore missing in which case Twig will ignore the statement if the
template to be included does not exist. It has to be placed just after the template name. Here some valid
examples:

1
2
3

{% include 'sidebar.html' ignore missing %}
{% include 'sidebar.html' ignore missing with {'foo': 'bar'} %}
{% include 'sidebar.html' ignore missing only %}

New in version 1.2: The possibility to pass an array of templates has been added in Twig 1.2.

You can also provide a list of templates that are checked for existence before inclusion. The first template
that exists will be included:

1 {% include ['page_detailed.html', 'page.html'] %}

If ignore missing is given, it will fall back to rendering nothing if none of the templates exist, otherwise
it will throw an exception.

PDF brought to you by
generated on March 13, 2014

Chapter 19: include | 81

http://sensiolabs.com

Listing 20-1

Listing 20-2

Listing 20-3

Chapter 20

macro

Macros are comparable with functions in regular programming languages. They are useful to put often
used HTML idioms into reusable elements to not repeat yourself.

Here is a small example of a macro that renders a form element:

1
2
3

{% macro input(name, value, type, size) %}
<input type="{{ type|default('text') }}" name="{{ name }}" value="{{ value|e }}"

size="{{ size|default(20) }}" />
{% endmacro %}

Macros differs from native PHP functions in a few ways:

• Default argument values are defined by using the default filter in the macro body;
• Arguments of a macro are always optional.

But as with PHP functions, macros don't have access to the current template variables.

You can pass the whole context as an argument by using the special _context variable.

Macros can be defined in any template, and need to be "imported" before being used (see the
documentation for the import tag for more information):

1 {% import "forms.html" as forms %}

The above import call imports the "forms.html" file (which can contain only macros, or a template and
some macros), and import the functions as items of the forms variable.

The macro can then be called at will:

1
2

<p>{{ forms.input('username') }}</p>
<p>{{ forms.input('password', null, 'password') }}</p>

PDF brought to you by
generated on March 13, 2014

Chapter 20: macro | 82

http://sensiolabs.com

Listing 20-4

Listing 20-5

If macros are defined and used in the same template, you can use the special _self variable to import
them:

1
2
3

{% import _self as forms %}

<p>{{ forms.input('username') }}</p>

When you define a macro in the template where you are going to use it, you might be tempted to
call the macro directly via _self.input() instead of importing it; even if seems to work, this is just
a side-effect of the current implementation and it won't work anymore in Twig 2.x.

When you want to use a macro in another macro from the same file, you need to import it locally:

1
2
3
4
5
6
7
8
9

10
11

{% macro input(name, value, type, size) %}
<input type="{{ type|default('text') }}" name="{{ name }}" value="{{ value|e }}"

size="{{ size|default(20) }}" />
{% endmacro %}

{% macro wrapped_input(name, value, type, size) %}
{% import _self as forms %}

<div class="field">
{{ forms.input(name, value, type, size) }}

</div>
{% endmacro %}

from, import

PDF brought to you by
generated on March 13, 2014

Chapter 20: macro | 83

http://sensiolabs.com

Listing 21-1

Listing 21-2

Chapter 21

sandbox

The sandbox tag can be used to enable the sandboxing mode for an included template, when sandboxing
is not enabled globally for the Twig environment:

1
2
3

{% sandbox %}
{% include 'user.html' %}

{% endsandbox %}

The sandbox tag is only available when the sandbox extension is enabled (see the Twig for
Developers chapter).

The sandbox tag can only be used to sandbox an include tag and it cannot be used to sandbox a
section of a template. The following example won't work:

1
2
3
4
5

{% sandbox %}
{% for i in 1..2 %}

{{ i }}
{% endfor %}

{% endsandbox %}

PDF brought to you by
generated on March 13, 2014

Chapter 21: sandbox | 84

http://sensiolabs.com

Listing 22-1

Listing 22-2

Listing 22-3

Listing 22-4

Listing 22-5

Chapter 22

set

Inside code blocks you can also assign values to variables. Assignments use the set tag and can have
multiple targets.

Here is how you can assign the bar value to the foo variable:

1 {% set foo = 'bar' %}

After the set call, the foo variable is available in the template like any other ones:

1
2

{# displays bar #}
{{ foo }}

The assigned value can be any valid Twig expressions:

1
2
3

{% set foo = [1, 2] %}
{% set foo = {'foo': 'bar'} %}
{% set foo = 'foo' ~ 'bar' %}

Several variables can be assigned in one block:

1
2
3
4
5
6

{% set foo, bar = 'foo', 'bar' %}

{# is equivalent to #}

{% set foo = 'foo' %}
{% set bar = 'bar' %}

The set tag can also be used to 'capture' chunks of text:

1
2
3

{% set foo %}
<div id="pagination">

...

PDF brought to you by
generated on March 13, 2014

Chapter 22: set | 85

http://sensiolabs.com

Listing 22-6

Listing 22-7

4
5

</div>
{% endset %}

If you enable automatic output escaping, Twig will only consider the content to be safe when
capturing chunks of text.

Note that loops are scoped in Twig; therefore a variable declared inside a for loop is not accessible
outside the loop itself:

1
2
3
4
5

{% for item in list %}
{% set foo = item %}

{% endfor %}

{# foo is NOT available #}

If you want to access the variable, just declare it before the loop:

1
2
3
4
5
6

{% set foo = "" %}
{% for item in list %}

{% set foo = item %}
{% endfor %}

{# foo is available #}

PDF brought to you by
generated on March 13, 2014

Chapter 22: set | 86

http://sensiolabs.com

Listing 23-1

Chapter 23

spaceless

Use the spaceless tag to remove whitespace between HTML tags, not whitespace within HTML tags or
whitespace in plain text:

1
2
3
4
5
6
7

{% spaceless %}
<div>

foo
</div>

{% endspaceless %}

{# output will be <div>foo</div> #}

This tag is not meant to "optimize" the size of the generated HTML content but merely to avoid extra
whitespace between HTML tags to avoid browser rendering quirks under some circumstances.

If you want to optimize the size of the generated HTML content, gzip compress the output instead.

If you want to create a tag that actually removes all extra whitespace in an HTML string, be warned
that this is not as easy as it seems to be (think of textarea or pre tags for instance). Using a third-
party library like Tidy is probably a better idea.

For more information on whitespace control, read the dedicated section of the documentation and
learn how you can also use the whitespace control modifier on your tags.

PDF brought to you by
generated on March 13, 2014

Chapter 23: spaceless | 87

http://sensiolabs.com

Listing 24-1

Listing 24-2

Listing 24-3

Chapter 24

use

New in version 1.1: Horizontal reuse was added in Twig 1.1.

Horizontal reuse is an advanced Twig feature that is hardly ever needed in regular templates. It is
mainly used by projects that need to make template blocks reusable without using inheritance.

Template inheritance is one of the most powerful Twig's feature but it is limited to single inheritance;
a template can only extend one other template. This limitation makes template inheritance simple to
understand and easy to debug:

1
2
3
4

{% extends "base.html" %}

{% block title %}{% endblock %}
{% block content %}{% endblock %}

Horizontal reuse is a way to achieve the same goal as multiple inheritance, but without the associated
complexity:

1
2
3
4
5
6

{% extends "base.html" %}

{% use "blocks.html" %}

{% block title %}{% endblock %}
{% block content %}{% endblock %}

The use statement tells Twig to import the blocks defined in blocks.html into the current template (it's
like macros, but for blocks):

1
2

blocks.html
{% block sidebar %}{% endblock %}

In this example, the use statement imports the sidebar block into the main template. The code is mostly
equivalent to the following one (the imported blocks are not outputted automatically):

PDF brought to you by
generated on March 13, 2014

Chapter 24: use | 88

http://sensiolabs.com

Listing 24-4

Listing 24-5

Listing 24-6

1
2
3
4
5

{% extends "base.html" %}

{% block sidebar %}{% endblock %}
{% block title %}{% endblock %}
{% block content %}{% endblock %}

The use tag only imports a template if it does not extend another template, if it does not define
macros, and if the body is empty. But it can use other templates.

Because use statements are resolved independently of the context passed to the template, the
template reference cannot be an expression.

The main template can also override any imported block. If the template already defines the sidebar
block, then the one defined in blocks.html is ignored. To avoid name conflicts, you can rename
imported blocks:

1
2
3
4
5
6
7

{% extends "base.html" %}

{% use "blocks.html" with sidebar as base_sidebar %}

{% block sidebar %}{% endblock %}
{% block title %}{% endblock %}
{% block content %}{% endblock %}

New in version 1.3: The parent() support was added in Twig 1.3.

The parent() function automatically determines the correct inheritance tree, so it can be used when
overriding a block defined in an imported template:

1
2
3
4
5
6
7
8
9

10

{% extends "base.html" %}

{% use "blocks.html" %}

{% block sidebar %}
{{ parent() }}

{% endblock %}

{% block title %}{% endblock %}
{% block content %}{% endblock %}

In this example, parent() will correctly call the sidebar block from the blocks.html template.

PDF brought to you by
generated on March 13, 2014

Chapter 24: use | 89

http://sensiolabs.com

Listing 24-7

In Twig 1.2, renaming allows you to simulate inheritance by calling the "parent" block:

1
2
3
4
5
6
7

{% extends "base.html" %}

{% use "blocks.html" with sidebar as parent_sidebar %}

{% block sidebar %}
{{ block('parent_sidebar') }}

{% endblock %}

You can use as many use statements as you want in any given template. If two imported templates
define the same block, the latest one wins.

PDF brought to you by
generated on March 13, 2014

Chapter 24: use | 90

http://sensiolabs.com

Listing 25-1

Chapter 25

verbatim

New in version 1.12: The verbatim tag was added in Twig 1.12 (it was named raw before).

The verbatim tag marks sections as being raw text that should not be parsed. For example to put Twig
syntax as example into a template you can use this snippet:

1
2
3
4
5
6
7

{% verbatim %}

{% for item in seq %}

{{ item }}
{% endfor %}

{% endverbatim %}

The verbatim tag works in the exact same way as the old raw tag, but was renamed to avoid
confusion with the raw filter.

PDF brought to you by
generated on March 13, 2014

Chapter 25: verbatim | 91

http://sensiolabs.com

Listing 26-1

Chapter 26

abs

The abs filter returns the absolute value.

1
2
3
4
5

{# number = -5 #}

{{ number|abs }}

{# outputs 5 #}

Internally, Twig uses the PHP abs1 function.

1. http://php.net/abs

PDF brought to you by
generated on March 13, 2014

Chapter 26: abs | 92

http://sensiolabs.com

Listing 27-1

Listing 27-2

Chapter 27

batch

New in version 1.12.3: The batch filter was added in Twig 1.12.3.

The batch filter "batches" items by returning a list of lists with the given number of items. If you provide
a second parameter, it is used to fill missing items:

1
2
3
4
5
6
7
8
9

10
11

{% set items = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] %}

<table>
{% for row in items|batch(3, 'No item') %}

<tr>
{% for column in row %}

<td>{{ column }}</td>
{% endfor %}

</tr>
{% endfor %}
</table>

The above example will be rendered as:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

<table>
<tr>

<td>a</td>
<td>b</td>
<td>c</td>

</tr>
<tr>

<td>d</td>
<td>e</td>
<td>f</td>

</tr>
<tr>

<td>g</td>
<td>No item</td>
<td>No item</td>

</tr>
</table>

PDF brought to you by
generated on March 13, 2014

Chapter 27: batch | 93

http://sensiolabs.com

Listing 28-1

Chapter 28

capitalize

The capitalize filter capitalizes a value. The first character will be uppercase, all others lowercase:

1
2
3

{{ 'my first car'|capitalize }}

{# outputs 'My first car' #}

PDF brought to you by
generated on March 13, 2014

Chapter 28: capitalize | 94

http://sensiolabs.com

Listing 29-1

Chapter 29

convert_encoding

New in version 1.4: The convert_encoding filter was added in Twig 1.4.

The convert_encoding filter converts a string from one encoding to another. The first argument is the
expected output charset and the second one is the input charset:

1 {{ data|convert_encoding('UTF-8', 'iso-2022-jp') }}

This filter relies on the iconv1 or mbstring2 extension, so one of them must be installed. In case both
are installed, mbstring3 is used by default (Twig before 1.8.1 uses iconv4 by default).

Arguments
• from: The input charset
• to: The output charset

1. http://php.net/iconv

2. http://php.net/mbstring

3. http://php.net/mbstring

4. http://php.net/iconv

PDF brought to you by
generated on March 13, 2014

Chapter 29: convert_encoding | 95

http://sensiolabs.com

Listing 30-1

Listing 30-2

Listing 30-3

Listing 30-4

Chapter 30

date

New in version 1.1: The timezone support has been added in Twig 1.1.

New in version 1.5: The default date format support has been added in Twig 1.5.

New in version 1.6.1: The default timezone support has been added in Twig 1.6.1.

New in version 1.11.0: The introduction of the false value for the timezone was introduced in Twig 1.11.0

The date filter formats a date to a given format:

1 {{ post.published_at|date("m/d/Y") }}

The format specifier is the same as supported by date1, except when the filtered data is of type
DateInterval2, when the format must conform to DateInterval::format3 instead.

The date filter accepts strings (it must be in a format supported by the strtotime4 function), DateTime5

instances, or DateInterval6 instances. For instance, to display the current date, filter the word "now":

1 {{ "now"|date("m/d/Y") }}

To escape words and characters in the date format use \\ in front of each character:

1 {{ post.published_at|date("F jS \\a\\t g:ia") }}

If the value passed to the date filter is null, it will return the current date by default. If an empty string
is desired instead of the current date, use a ternary operator:

{{ post.published_at is empty ? "" : post.published_at|date("m/d/Y") }}

1. http://www.php.net/date

2. http://www.php.net/DateInterval

3. http://www.php.net/DateInterval.format

4. http://www.php.net/strtotime

5. http://www.php.net/DateTime

6. http://www.php.net/DateInterval

PDF brought to you by
generated on March 13, 2014

Chapter 30: date | 96

http://sensiolabs.com

Listing 30-5

Listing 30-6

Listing 30-7

Listing 30-8

If no format is provided, Twig will use the default one: F j, Y H:i. This default can be easily changed by
calling the setDateFormat() method on the core extension instance. The first argument is the default
format for dates and the second one is the default format for date intervals:

1
2

$twig = new Twig_Environment($loader);
$twig->getExtension('core')->setDateFormat('d/m/Y', '%d days');

Timezone
By default, the date is displayed by applying the default timezone (the one specified in php.ini or declared
in Twig -- see below), but you can override it by explicitly specifying a timezone:

1 {{ post.published_at|date("m/d/Y", "Europe/Paris") }}

If the date is already a DateTime object, and if you want to keep its current timezone, pass false as the
timezone value:

1 {{ post.published_at|date("m/d/Y", false) }}

The default timezone can also be set globally by calling setTimezone():

1
2

$twig = new Twig_Environment($loader);
$twig->getExtension('core')->setTimezone('Europe/Paris');

Arguments
• format: The date format
• timezone: The date timezone

PDF brought to you by
generated on March 13, 2014

Chapter 30: date | 97

http://sensiolabs.com

Listing 31-1

Chapter 31

date_modify

New in version 1.9.0: The date_modify filter has been added in Twig 1.9.0.

The date_modify filter modifies a date with a given modifier string:

1 {{ post.published_at|date_modify("+1 day")|date("m/d/Y") }}

The date_modify filter accepts strings (it must be in a format supported by the strtotime1 function) or
DateTime2 instances. You can easily combine it with the date filter for formatting.

Arguments
• modifier: The modifier

1. http://www.php.net/strtotime

2. http://www.php.net/DateTime

PDF brought to you by
generated on March 13, 2014

Chapter 31: date_modify | 98

http://sensiolabs.com

Listing 32-1

Listing 32-2

Chapter 32

default

The default filter returns the passed default value if the value is undefined or empty, otherwise the value
of the variable:

1
2
3
4
5
6
7

{{ var|default('var is not defined') }}

{{ var.foo|default('foo item on var is not defined') }}

{{ var['foo']|default('foo item on var is not defined') }}

{{ ''|default('passed var is empty') }}

When using the default filter on an expression that uses variables in some method calls, be sure to use
the default filter whenever a variable can be undefined:

1 {{ var.method(foo|default('foo'))|default('foo') }}

Read the documentation for the defined and empty tests to learn more about their semantics.

Arguments
• default: The default value

PDF brought to you by
generated on March 13, 2014

Chapter 32: default | 99

http://sensiolabs.com

Listing 33-1

Listing 33-2

Listing 33-3

Listing 33-4

Chapter 33

escape

New in version 1.9.0: The css, url, and html_attr strategies were added in Twig 1.9.0.

New in version 1.14.0: The ability to define custom escapers was added in Twig 1.14.0.

The escape filter escapes a string for safe insertion into the final output. It supports different escaping
strategies depending on the template context.

By default, it uses the HTML escaping strategy:

1 {{ user.username|escape }}

For convenience, the e filter is defined as an alias:

1 {{ user.username|e }}

The escape filter can also be used in other contexts than HTML thanks to an optional argument which
defines the escaping strategy to use:

1
2
3

{{ user.username|e }}
{# is equivalent to #}
{{ user.username|e('html') }}

And here is how to escape variables included in JavaScript code:

1
2

{{ user.username|escape('js') }}
{{ user.username|e('js') }}

The escape filter supports the following escaping strategies:

• html: escapes a string for the HTML body context.
• js: escapes a string for the JavaScript context.
• css: escapes a string for the CSS context. CSS escaping can be applied to any string being

inserted into CSS and escapes everything except alphanumerics.
• url: escapes a string for the URI or parameter contexts. This should not be used to escape

an entire URI; only a subcomponent being inserted.

PDF brought to you by
generated on March 13, 2014

Chapter 33: escape | 100

http://sensiolabs.com

Listing 33-5

Listing 33-6

Listing 33-7

• html_attr: escapes a string for the HTML attribute context.

Internally, escape uses the PHP native htmlspecialchars1 function for the HTML escaping strategy.

When using automatic escaping, Twig tries to not double-escape a variable when the automatic
escaping strategy is the same as the one applied by the escape filter; but that does not work when
using a variable as the escaping strategy:

1
2
3
4
5
6

{% set strategy = 'html' %}

{% autoescape 'html' %}
{{ var|escape('html') }} {# won't be double-escaped #}
{{ var|escape(strategy) }} {# will be double-escaped #}

{% endautoescape %}

When using a variable as the escaping strategy, you should disable automatic escaping:

1
2
3
4
5

{% set strategy = 'html' %}

{% autoescape 'html' %}
{{ var|escape(strategy)|raw }} {# won't be double-escaped #}

{% endautoescape %}

Custom Escapers
You can define custom escapers by calling the setEscaper() method on the core extension instance.
The first argument is the escaper name (to be used in the escape call) and the second one must be a valid
PHP callable:

1
2

$twig = new Twig_Environment($loader);
$twig->getExtension('core')->setEscaper('csv', 'csv_escaper'));

When called by Twig, the callable receives the Twig environment instance, the string to escape, and the
charset.

Built-in escapers cannot be overridden mainly they should be considered as the final
implementation and also for better performance.

Arguments
• strategy: The escaping strategy
• charset: The string charset

1. http://php.net/htmlspecialchars

PDF brought to you by
generated on March 13, 2014

Chapter 33: escape | 101

http://sensiolabs.com

Listing 34-1

Chapter 34

first

New in version 1.12.2: The first filter was added in Twig 1.12.2.

The first filter returns the first "element" of a sequence, a mapping, or a string:

1
2
3
4
5
6
7
8

{{ [1, 2, 3, 4]|first }}
{# outputs 1 #}

{{ { a: 1, b: 2, c: 3, d: 4 }|first }}
{# outputs 1 #}

{{ '1234'|first }}
{# outputs 1 #}

It also works with objects implementing the Traversable1 interface.

1. http://php.net/manual/en/class.traversable.php

PDF brought to you by
generated on March 13, 2014

Chapter 34: first | 102

http://sensiolabs.com

Listing 35-1

Chapter 35

format

The format filter formats a given string by replacing the placeholders (placeholders follows the sprintf1

notation):

1
2
3
4

{{ "I like %s and %s."|format(foo, "bar") }}

{# outputs I like foo and bar
if the foo parameter equals to the foo string. #}

replace

1. http://www.php.net/sprintf

PDF brought to you by
generated on March 13, 2014

Chapter 35: format | 103

http://sensiolabs.com

Listing 36-1

Listing 36-2

Chapter 36

join

The join filter returns a string which is the concatenation of the items of a sequence:

1
2

{{ [1, 2, 3]|join }}
{# returns 123 #}

The separator between elements is an empty string per default, but you can define it with the optional
first parameter:

1
2

{{ [1, 2, 3]|join('|') }}
{# outputs 1|2|3 #}

Arguments
• glue: The separator

PDF brought to you by
generated on March 13, 2014

Chapter 36: join | 104

http://sensiolabs.com

Listing 37-1

Chapter 37

json_encode

The json_encode filter returns the JSON representation of a string:

1 {{ data|json_encode() }}

Internally, Twig uses the PHP json_encode1 function.

Arguments

• options: A bitmask of json_encode options2 ({{
data|json_encode(constant('JSON_PRETTY_PRINT')) }})

1. http://php.net/json_encode

2. http://www.php.net/manual/en/json.constants.php

PDF brought to you by
generated on March 13, 2014

Chapter 37: json_encode | 105

http://sensiolabs.com

Listing 38-1

Chapter 38

keys

The keys filter returns the keys of an array. It is useful when you want to iterate over the keys of an array:

1
2
3

{% for key in array|keys %}
...

{% endfor %}

PDF brought to you by
generated on March 13, 2014

Chapter 38: keys | 106

http://sensiolabs.com

Listing 39-1

Chapter 39

last

New in version 1.12.2: The last filter was added in Twig 1.12.2.

The last filter returns the last "element" of a sequence, a mapping, or a string:

1
2
3
4
5
6
7
8

{{ [1, 2, 3, 4]|last }}
{# outputs 4 #}

{{ { a: 1, b: 2, c: 3, d: 4 }|last }}
{# outputs 4 #}

{{ '1234'|last }}
{# outputs 4 #}

It also works with objects implementing the Traversable1 interface.

1. http://php.net/manual/en/class.traversable.php

PDF brought to you by
generated on March 13, 2014

Chapter 39: last | 107

http://sensiolabs.com

Listing 40-1

Chapter 40

length

The length filters returns the number of items of a sequence or mapping, or the length of a string:

1
2
3

{% if users|length > 10 %}
...

{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 40: length | 108

http://sensiolabs.com

Listing 41-1

Chapter 41

lower

The lower filter converts a value to lowercase:

1
2
3

{{ 'WELCOME'|lower }}

{# outputs 'welcome' #}

PDF brought to you by
generated on March 13, 2014

Chapter 41: lower | 109

http://sensiolabs.com

Listing 42-1

Chapter 42

nl2br

New in version 1.5: The nl2br filter was added in Twig 1.5.

The nl2br filter inserts HTML line breaks before all newlines in a string:

1
2
3
4
5
6
7

{{ "I like Twig.\nYou will like it too."|nl2br }}
{# outputs

I like Twig.

You will like it too.

#}

The nl2br filter pre-escapes the input before applying the transformation.

PDF brought to you by
generated on March 13, 2014

Chapter 42: nl2br | 110

http://sensiolabs.com

Listing 43-1

Listing 43-2

Listing 43-3

Chapter 43

number_format

New in version 1.5: The number_format filter was added in Twig 1.5

The number_format filter formats numbers. It is a wrapper around PHP's number_format1 function:

1 {{ 200.35|number_format }}

You can control the number of decimal places, decimal point, and thousands separator using the
additional arguments:

1 {{ 9800.333|number_format(2, '.', ',') }}

If no formatting options are provided then Twig will use the default formatting options of:

• 0 decimal places.
• . as the decimal point.
• , as the thousands separator.

These defaults can be easily changed through the core extension:

1
2

$twig = new Twig_Environment($loader);
$twig->getExtension('core')->setNumberFormat(3, '.', ',');

The defaults set for number_format can be over-ridden upon each call using the additional parameters.

Arguments
• decimal: The number of decimal points to display
• decimal_point: The character(s) to use for the decimal point
• thousand_sep: The character(s) to use for the thousands separator

1. http://php.net/number_format

PDF brought to you by
generated on March 13, 2014

Chapter 43: number_format | 111

http://sensiolabs.com

Listing 44-1

Listing 44-2

Listing 44-3

Chapter 44

merge

The merge filter merges an array with another array:

1
2
3
4
5

{% set values = [1, 2] %}

{% set values = values|merge(['apple', 'orange']) %}

{# values now contains [1, 2, 'apple', 'orange'] #}

New values are added at the end of the existing ones.

The merge filter also works on hashes:

1
2
3
4
5

{% set items = { 'apple': 'fruit', 'orange': 'fruit', 'peugeot': 'unknown' } %}

{% set items = items|merge({ 'peugeot': 'car', 'renault': 'car' }) %}

{# items now contains { 'apple': 'fruit', 'orange': 'fruit', 'peugeot': 'car', 'renault':
'car' } #}

For hashes, the merging process occurs on the keys: if the key does not already exist, it is added but if the
key already exists, its value is overridden.

If you want to ensure that some values are defined in an array (by given default values), reverse the
two elements in the call:

1
2
3
4
5

{% set items = { 'apple': 'fruit', 'orange': 'fruit' } %}

{% set items = { 'apple': 'unknown' }|merge(items) %}

{# items now contains { 'apple': 'fruit', 'orange': 'fruit' } #}

PDF brought to you by
generated on March 13, 2014

Chapter 44: merge | 112

http://sensiolabs.com

Listing 45-1

Chapter 45

upper

The upper filter converts a value to uppercase:

1
2
3

{{ 'welcome'|upper }}

{# outputs 'WELCOME' #}

PDF brought to you by
generated on March 13, 2014

Chapter 45: upper | 113

http://sensiolabs.com

Listing 46-1

Chapter 46

raw

The raw filter marks the value as being "safe", which means that in an environment with automatic
escaping enabled this variable will not be escaped if raw is the last filter applied to it:

1
2
3

{% autoescape %}
{{ var|raw }} {# var won't be escaped #}

{% endautoescape %}

PDF brought to you by
generated on March 13, 2014

Chapter 46: raw | 114

http://sensiolabs.com

Listing 47-1

Chapter 47

replace

The replace filter formats a given string by replacing the placeholders (placeholders are free-form):

1
2
3
4

{{ "I like %this% and %that%."|replace({'%this%': foo, '%that%': "bar"}) }}

{# outputs I like foo and bar
if the foo parameter equals to the foo string. #}

Arguments
• replace_pairs: The placeholder values

format

PDF brought to you by
generated on March 13, 2014

Chapter 47: replace | 115

http://sensiolabs.com

Listing 48-1

Listing 48-2

Chapter 48

reverse

New in version 1.6: Support for strings has been added in Twig 1.6.

The reverse filter reverses a sequence, a mapping, or a string:

1
2
3
4
5
6
7

{% for user in users|reverse %}
...

{% endfor %}

{{ '1234'|reverse }}

{# outputs 4321 #}

For sequences and mappings, numeric keys are not preserved. To reverse them as well, pass true
as an argument to the reverse filter:

1
2
3
4
5
6
7
8
9

10
11

{% for key, value in {1: "a", 2: "b", 3: "c"}|reverse %}
{{ key }}: {{ value }}

{%- endfor %}

{# output: 0: c 1: b 2: a #}

{% for key, value in {1: "a", 2: "b", 3: "c"}|reverse(true) %}
{{ key }}: {{ value }}

{%- endfor %}

{# output: 3: c 2: b 1: a #}

It also works with objects implementing the Traversable1 interface.

1. http://php.net/Traversable

PDF brought to you by
generated on March 13, 2014

Chapter 48: reverse | 116

http://sensiolabs.com

Arguments
• preserve_keys: Preserve keys when reversing a mapping or a sequence.

PDF brought to you by
generated on March 13, 2014

Chapter 48: reverse | 117

http://sensiolabs.com

Listing 49-1

Chapter 49

round

New in version 1.15.0: The round filter was added in Twig 1.15.0.

The round filter rounds a number to a given precision:

1
2
3
4
5

{{ 42.55|round }}
{# outputs 43 #}

{{ 42.55|round(1, 'floor') }}
{# outputs 42.5 #}

The round filter takes two optional arguments; the first one specifies the precision (default is 0) and the
second the rounding method (default is common):

• common rounds either up or down (rounds the value up to precision decimal places away from
zero, when it is half way there -- making 1.5 into 2 and -1.5 into -2);

• ceil always rounds up;
• floor always rounds down.

The // operator is equivalent to |round(0, 'floor').

Arguments
• precision: The rounding precision
• method: The rounding method

PDF brought to you by
generated on March 13, 2014

Chapter 49: round | 118

http://sensiolabs.com

Listing 50-1

Listing 50-2

Listing 50-3

Chapter 50

slice

New in version 1.6: The slice filter was added in Twig 1.6.

The slice filter extracts a slice of a sequence, a mapping, or a string:

1
2
3
4
5
6
7

{% for i in [1, 2, 3, 4, 5]|slice(1, 2) %}
{# will iterate over 2 and 3 #}

{% endfor %}

{{ '12345'|slice(1, 2) }}

{# outputs 23 #}

You can use any valid expression for both the start and the length:

1
2
3

{% for i in [1, 2, 3, 4, 5]|slice(start, length) %}
{# ... #}

{% endfor %}

As syntactic sugar, you can also use the [] notation:

1
2
3
4
5
6
7
8
9

10
11

{% for i in [1, 2, 3, 4, 5][start:length] %}
{# ... #}

{% endfor %}

{{ '12345'[1:2] }}

{# you can omit the first argument -- which is the same as 0 #}
{{ '12345'[:2] }} {# will display "12" #}

{# you can omit the last argument -- which will select everything till the end #}
{{ '12345'[2:] }} {# will display "345" #}

The slice filter works as the array_slice1 PHP function for arrays and substr2 for strings.

1. http://php.net/array_slice

2. http://php.net/substr

PDF brought to you by
generated on March 13, 2014

Chapter 50: slice | 119

http://sensiolabs.com

If the start is non-negative, the sequence will start at that start in the variable. If start is negative, the
sequence will start that far from the end of the variable.

If length is given and is positive, then the sequence will have up to that many elements in it. If the variable
is shorter than the length, then only the available variable elements will be present. If length is given and
is negative then the sequence will stop that many elements from the end of the variable. If it is omitted,
then the sequence will have everything from offset up until the end of the variable.

It also works with objects implementing the Traversable3 interface.

Arguments
• start: The start of the slice
• length: The size of the slice
• preserve_keys: Whether to preserve key or not (when the input is an array)

3. http://php.net/manual/en/class.traversable.php

PDF brought to you by
generated on March 13, 2014

Chapter 50: slice | 120

http://sensiolabs.com

Listing 51-1

Chapter 51

sort

The sort filter sorts an array:

1
2
3

{% for user in users|sort %}
...

{% endfor %}

Internally, Twig uses the PHP asort1 function to maintain index association.

1. http://php.net/asort

PDF brought to you by
generated on March 13, 2014

Chapter 51: sort | 121

http://sensiolabs.com

Listing 52-1

Listing 52-2

Listing 52-3

Chapter 52

split

New in version 1.10.3: The split filter was added in Twig 1.10.3.

The split filter splits a string by the given delimiter and returns a list of strings:

1
2

{{ "one,two,three"|split(',') }}
{# returns ['one', 'two', 'three'] #}

You can also pass a limit argument:

• If limit is positive, the returned array will contain a maximum of limit elements with
the last element containing the rest of string;

• If limit is negative, all components except the last -limit are returned;
• If limit is zero, then this is treated as 1.

1
2

{{ "one,two,three,four,five"|split(',', 3) }}
{# returns ['one', 'two', 'three,four,five'] #}

If the delimiter is an empty string, then value will be split by equal chunks. Length is set by the limit
argument (one character by default).

1
2
3
4
5

{{ "123"|split('') }}
{# returns ['1', '2', '3'] #}

{{ "aabbcc"|split('', 2) }}
{# returns ['aa', 'bb', 'cc'] #}

Internally, Twig uses the PHP explode1 or str_split2 (if delimiter is empty) functions for string
splitting.

PDF brought to you by
generated on March 13, 2014

Chapter 52: split | 122

http://sensiolabs.com

Arguments
• delimiter: The delimiter
• limit: The limit argument

1. http://php.net/explode

2. http://php.net/str_split

PDF brought to you by
generated on March 13, 2014

Chapter 52: split | 123

http://sensiolabs.com

Listing 53-1

Chapter 53

striptags

The striptags filter strips SGML/XML tags and replace adjacent whitespace by one space:

1 {{ some_html|striptags }}

Internally, Twig uses the PHP strip_tags1 function.

1. http://php.net/strip_tags

PDF brought to you by
generated on March 13, 2014

Chapter 53: striptags | 124

http://sensiolabs.com

Listing 54-1

Chapter 54

title

The title filter returns a titlecased version of the value. Words will start with uppercase letters, all
remaining characters are lowercase:

1
2
3

{{ 'my first car'|title }}

{# outputs 'My First Car' #}

PDF brought to you by
generated on March 13, 2014

Chapter 54: title | 125

http://sensiolabs.com

Listing 55-1

Chapter 55

trim

New in version 1.6.2: The trim filter was added in Twig 1.6.2.

The trim filter strips whitespace (or other characters) from the beginning and end of a string:

1
2
3
4
5
6
7

{{ ' I like Twig. '|trim }}

{# outputs 'I like Twig.' #}

{{ ' I like Twig.'|trim('.') }}

{# outputs ' I like Twig' #}

Internally, Twig uses the PHP trim1 function.

Arguments
• character_mask: The characters to strip

1. http://php.net/trim

PDF brought to you by
generated on March 13, 2014

Chapter 55: trim | 126

http://sensiolabs.com

Listing 56-1

Chapter 56

url_encode

New in version 1.12.3: Support for encoding an array as query string was added in Twig 1.12.3.

The url_encode filter percent encodes a given string as URL segment or an array as query string:

1
2
3
4
5
6
7
8

{{ "path-seg*ment"|url_encode }}
{# outputs "path-seg%2Ament" #}

{{ "string with spaces"|url_encode(true) }}
{# outputs "string%20with%20spaces" #}

{{ {'param': 'value', 'foo': 'bar'}|url_encode }}
{# outputs "param=value&foo=bar" #}

Internally, Twig uses the PHP urlencode1 (or rawurlencode2 if you pass true as the first parameter)
or the http_build_query3 function.

1. http://php.net/urlencode

2. http://php.net/rawurlencode

3. http://php.net/http_build_query

PDF brought to you by
generated on March 13, 2014

Chapter 56: url_encode | 127

http://sensiolabs.com

Listing 57-1

Listing 57-2

Chapter 57

attribute

New in version 1.2: The attribute function was added in Twig 1.2.

The attribute function can be used to access a "dynamic" attribute of a variable:

1
2
3

{{ attribute(object, method) }}
{{ attribute(object, method, arguments) }}
{{ attribute(array, item) }}

In addition, the defined test can check for the existence of a dynamic attribute:

{{ attribute(object, method) is defined ? 'Method exists' : 'Method does not exist' }}

The resolution algorithm is the same as the one used for the . notation, except that the item can
be any valid expression.

PDF brought to you by
generated on March 13, 2014

Chapter 57: attribute | 128

http://sensiolabs.com

Listing 58-1

Chapter 58

block

When a template uses inheritance and if you want to print a block multiple times, use the block function:

1
2
3
4
5

<title>{% block title %}{% endblock %}</title>

<h1>{{ block('title') }}</h1>

{% block body %}{% endblock %}

extends, parent

PDF brought to you by
generated on March 13, 2014

Chapter 58: block | 129

http://sensiolabs.com

Listing 59-1

Listing 59-2

Chapter 59

constant

constant returns the constant value for a given string:

1
2

{{ some_date|date(constant('DATE_W3C')) }}
{{ constant('Namespace\\Classname::CONSTANT_NAME') }}

As of 1.12.1 you can read constants from object instances as well:

1 {{ constant('RSS', date) }}

PDF brought to you by
generated on March 13, 2014

Chapter 59: constant | 130

http://sensiolabs.com

Listing 60-1

Listing 60-2

Chapter 60

cycle

The cycle function cycles on an array of values:

1
2
3
4
5
6

{% set start_year = date() | date('Y') %}
{% set end_year = start_year + 5 %}

{% for year in start_year..end_year %}
{{ cycle(['odd', 'even'], loop.index0) }}

{% endfor %}

The array can contain any number of values:

1
2
3
4
5

{% set fruits = ['apple', 'orange', 'citrus'] %}

{% for i in 0..10 %}
{{ cycle(fruits, i) }}

{% endfor %}

Arguments
• position: The cycle position

PDF brought to you by
generated on March 13, 2014

Chapter 60: cycle | 131

http://sensiolabs.com

Listing 61-1

Listing 61-2

Listing 61-3

Listing 61-4

Chapter 61

date

New in version 1.6: The date function has been added in Twig 1.6.

New in version 1.6.1: The default timezone support has been added in Twig 1.6.1.

Converts an argument to a date to allow date comparison:

1
2
3

{% if date(user.created_at) < date('-2days') %}
{# do something #}

{% endif %}

The argument must be in a format supported by the date1 function.

You can pass a timezone as the second argument:

1
2
3

{% if date(user.created_at) < date('-2days', 'Europe/Paris') %}
{# do something #}

{% endif %}

If no argument is passed, the function returns the current date:

1
2
3

{% if date(user.created_at) < date() %}
{# always! #}

{% endif %}

You can set the default timezone globally by calling setTimezone() on the core extension
instance:

1
2

$twig = new Twig_Environment($loader);
$twig->getExtension('core')->setTimezone('Europe/Paris');

1. http://www.php.net/date

PDF brought to you by
generated on March 13, 2014

Chapter 61: date | 132

http://sensiolabs.com

Arguments
• date: The date
• timezone: The timezone

PDF brought to you by
generated on March 13, 2014

Chapter 61: date | 133

http://sensiolabs.com

Listing 62-1

Listing 62-2

Listing 62-3

Chapter 62

dump

New in version 1.5: The dump function was added in Twig 1.5.

The dump function dumps information about a template variable. This is mostly useful to debug a
template that does not behave as expected by introspecting its variables:

1 {{ dump(user) }}

The dump function is not available by default. You must add the Twig_Extension_Debug extension
explicitly when creating your Twig environment:

1
2
3
4
5

$twig = new Twig_Environment($loader, array(
'debug' => true,
// ...

));
$twig->addExtension(new Twig_Extension_Debug());

Even when enabled, the dump function won't display anything if the debug option on the
environment is not enabled (to avoid leaking debug information on a production server).

In an HTML context, wrap the output with a pre tag to make it easier to read:

1
2
3

<pre>
{{ dump(user) }}

</pre>

Using a pre tag is not needed when XDebug1 is enabled and html_errors is on; as a bonus, the
output is also nicer with XDebug enabled.

You can debug several variables by passing them as additional arguments:

1. http://xdebug.org/docs/display

PDF brought to you by
generated on March 13, 2014

Chapter 62: dump | 134

http://sensiolabs.com

Listing 62-4

Listing 62-5

1 {{ dump(user, categories) }}

If you don't pass any value, all variables from the current context are dumped:

1 {{ dump() }}

Internally, Twig uses the PHP var_dump2 function.

Arguments
• context: The context to dump

2. http://php.net/var_dump

PDF brought to you by
generated on March 13, 2014

Chapter 62: dump | 135

http://sensiolabs.com

Listing 63-1

Listing 63-2

Listing 63-3

Listing 63-4

Listing 63-5

Chapter 63

include

New in version 1.12: The include function was added in Twig 1.12.

The include function returns the rendered content of a template:

1
2

{{ include('template.html') }}
{{ include(some_var) }}

Included templates have access to the variables of the active context.

If you are using the filesystem loader, the templates are looked for in the paths defined by it.

The context is passed by default to the template but you can also pass additional variables:

1
2

{# template.html will have access to the variables from the current context and the
additional ones provided #}
{{ include('template.html', {foo: 'bar'}) }}

You can disable access to the context by setting with_context to false:

1
2

{# only the foo variable will be accessible #}
{{ include('template.html', {foo: 'bar'}, with_context = false) }}

1
2

{# no variables will be accessible #}
{{ include('template.html', with_context = false) }}

And if the expression evaluates to a Twig_Template object, Twig will use it directly:

1
2
3
4
5

// {{ include(template) }}

$template = $twig->loadTemplate('some_template.twig');

$twig->loadTemplate('template.twig')->display(array('template' => $template));

When you set the ignore_missing flag, Twig will return an empty string if the template does not exist:

PDF brought to you by
generated on March 13, 2014

Chapter 63: include | 136

http://sensiolabs.com

Listing 63-6

Listing 63-7

Listing 63-8

1 {{ include('sidebar.html', ignore_missing = true) }}

You can also provide a list of templates that are checked for existence before inclusion. The first template
that exists will be rendered:

1 {{ include(['page_detailed.html', 'page.html']) }}

If ignore_missing is set, it will fall back to rendering nothing if none of the templates exist, otherwise it
will throw an exception.

When including a template created by an end user, you should consider sandboxing it:

1 {{ include('page.html', sandboxed = true) }}

Arguments
• template: The template to render
• variables: The variables to pass to the template
• with_context: Whether to pass the current context variables or not
• ignore_missing: Whether to ignore missing templates or not
• sandboxed: Whether to sandbox the template or not

PDF brought to you by
generated on March 13, 2014

Chapter 63: include | 137

http://sensiolabs.com

Listing 64-1

Listing 64-2

Chapter 64

max

New in version 1.15: The max function was added in Twig 1.15.

max returns the biggest value of a sequence or a set of values:

1
2

{{ max(1, 3, 2) }}
{{ max([1, 3, 2]) }}

When called with a mapping, max ignores keys and only compares values:

1
2

{{ max({2: "two", 1: "one", 3: "three", 5: "five", 4: "for"}) }}
{# return "two" #}

PDF brought to you by
generated on March 13, 2014

Chapter 64: max | 138

http://sensiolabs.com

Listing 65-1

Listing 65-2

Chapter 65

min

New in version 1.15: The min function was added in Twig 1.15.

min returns the lowest value of a sequence or a set of values:

1
2

{{ min(1, 3, 2) }}
{{ min([1, 3, 2]) }}

When called with a mapping, min ignores keys and only compares values:

1
2

{{ min({2: "two", 1: "one", 3: "three", 5: "five", 4: "for"}) }}
{# return "five" #}

PDF brought to you by
generated on March 13, 2014

Chapter 65: min | 139

http://sensiolabs.com

Listing 66-1

Chapter 66

parent

When a template uses inheritance, it's possible to render the contents of the parent block when overriding
a block by using the parent function:

1
2
3
4
5
6
7

{% extends "base.html" %}

{% block sidebar %}
<h3>Table Of Contents</h3>
...
{{ parent() }}

{% endblock %}

The parent() call will return the content of the sidebar block as defined in the base.html template.

extends, block, block

PDF brought to you by
generated on March 13, 2014

Chapter 66: parent | 140

http://sensiolabs.com

Listing 67-1

Chapter 67

random

New in version 1.5: The random function was added in Twig 1.5.

New in version 1.6: String and integer handling was added in Twig 1.6.

The random function returns a random value depending on the supplied parameter type:

• a random item from a sequence;
• a random character from a string;
• a random integer between 0 and the integer parameter (inclusive).

1
2
3
4

{{ random(['apple', 'orange', 'citrus']) }} {# example output: orange #}
{{ random('ABC') }} {# example output: C #}
{{ random() }} {# example output: 15386094 (works as the
native PHP mt_rand function) #}
{{ random(5) }} {# example output: 3 #}

Arguments
• values: The values

PDF brought to you by
generated on March 13, 2014

Chapter 67: random | 141

http://sensiolabs.com

Listing 68-1

Listing 68-2

Listing 68-3

Chapter 68

range

Returns a list containing an arithmetic progression of integers:

1
2
3
4
5

{% for i in range(0, 3) %}
{{ i }},

{% endfor %}

{# outputs 0, 1, 2, 3, #}

When step is given (as the third parameter), it specifies the increment (or decrement):

1
2
3
4
5

{% for i in range(0, 6, 2) %}
{{ i }},

{% endfor %}

{# outputs 0, 2, 4, 6, #}

The Twig built-in .. operator is just syntactic sugar for the range function (with a step of 1):

1
2
3

{% for i in 0..3 %}
{{ i }},

{% endfor %}

The range function works as the native PHP range1 function.

Arguments
• low: The first value of the sequence.

1. http://php.net/range

PDF brought to you by
generated on March 13, 2014

Chapter 68: range | 142

http://sensiolabs.com

• high: The highest possible value of the sequence.
• step: The increment between elements of the sequence.

PDF brought to you by
generated on March 13, 2014

Chapter 68: range | 143

http://sensiolabs.com

Listing 69-1

Chapter 69

source

New in version 1.15: The source function was added in Twig 1.15.

The source function returns the content of a template without rendering it:

1
2

{{ source('template.html') }}
{{ source(some_var) }}

The function uses the same template loaders as the ones used to include templates. So, if you are using
the filesystem loader, the templates are looked for in the paths defined by it.

Arguments
• name: The name of the template to read

PDF brought to you by
generated on March 13, 2014

Chapter 69: source | 144

http://sensiolabs.com

Listing 70-1

Listing 70-2

Chapter 70

template_from_string

New in version 1.11: The template_from_string function was added in Twig 1.11.

The template_from_string function loads a template from a string:

1
2

{{ include(template_from_string("Hello {{ name }}")) }}
{{ include(template_from_string(page.template)) }}

The template_from_string function is not available by default. You must add the
Twig_Extension_StringLoader extension explicitly when creating your Twig environment:

1
2

$twig = new Twig_Environment(...);
$twig->addExtension(new Twig_Extension_StringLoader());

Even if you will probably always use the template_from_string function with the include
function, you can use it with any tag or function that takes a template as an argument (like the
embed or extends tags).

Arguments
• template: The template

PDF brought to you by
generated on March 13, 2014

Chapter 70: template_from_string | 145

http://sensiolabs.com

Listing 71-1

Listing 71-2

Chapter 71

constant

constant checks if a variable has the exact same value as a constant. You can use either global constants
or class constants:

1
2
3

{% if post.status is constant('Post::PUBLISHED') %}
the status attribute is exactly the same as Post::PUBLISHED

{% endif %}

You can test constants from object instances as well:

1
2
3

{% if post.status is constant('PUBLISHED', post) %}
the status attribute is exactly the same as Post::PUBLISHED

{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 71: constant | 146

http://sensiolabs.com

Listing 72-1

Listing 72-2

Chapter 72

defined

defined checks if a variable is defined in the current context. This is very useful if you use the
strict_variables option:

1
2
3
4
5
6
7
8
9

10
11
12
13

{# defined works with variable names #}
{% if foo is defined %}

...
{% endif %}

{# and attributes on variables names #}
{% if foo.bar is defined %}

...
{% endif %}

{% if foo['bar'] is defined %}
...

{% endif %}

When using the defined test on an expression that uses variables in some method calls, be sure that they
are all defined first:

1
2
3

{% if var is defined and foo.method(var) is defined %}
...

{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 72: defined | 147

http://sensiolabs.com

Listing 73-1

Chapter 73

divisible by

New in version 1.14.2: The divisible by test was added in Twig 1.14.2 as an alias for divisibleby.

divisible by checks if a variable is divisible by a number:

1
2
3

{% if loop.index is divisible by(3) %}
...

{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 73: divisible by | 148

http://sensiolabs.com

Listing 74-1

Chapter 74

empty

empty checks if a variable is empty:

1
2
3
4

{# evaluates to true if the foo variable is null, false, an empty array, or the empty
string #}
{% if foo is empty %}

...
{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 74: empty | 149

http://sensiolabs.com

Listing 75-1

Chapter 75

even

even returns true if the given number is even:

1 {{ var is even }}

odd

PDF brought to you by
generated on March 13, 2014

Chapter 75: even | 150

http://sensiolabs.com

Listing 76-1

Chapter 76

iterable

New in version 1.7: The iterable test was added in Twig 1.7.

iterable checks if a variable is an array or a traversable object:

1
2
3
4
5
6
7
8
9

{# evaluates to true if the foo variable is iterable #}
{% if users is iterable %}

{% for user in users %}
Hello {{ user }}!

{% endfor %}
{% else %}

{# users is probably a string #}
Hello {{ users }}!

{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 76: iterable | 151

http://sensiolabs.com

Listing 77-1

Chapter 77

null

null returns true if the variable is null:

1 {{ var is null }}

none is an alias for null.

PDF brought to you by
generated on March 13, 2014

Chapter 77: null | 152

http://sensiolabs.com

Listing 78-1

Chapter 78

odd

odd returns true if the given number is odd:

1 {{ var is odd }}

even

PDF brought to you by
generated on March 13, 2014

Chapter 78: odd | 153

http://sensiolabs.com

Listing 79-1

Chapter 79

same as

New in version 1.14.2: The same as test was added in Twig 1.14.2 as an alias for sameas.

same as checks if a variable points to the same memory address than another variable:

1
2
3

{% if foo.attribute is same as(false) %}
the foo attribute really is the 'false' PHP value

{% endif %}

PDF brought to you by
generated on March 13, 2014

Chapter 79: same as | 154

http://sensiolabs.com

Listing 80-1

Listing 80-2

Listing 80-3

Chapter 80

Installation

You have multiple ways to install Twig.

Installing the Twig PHP package

Installing via Composer (recommended)

1. Install Composer in your project:

1 curl -s http://getcomposer.org/installer | php

2. Create a composer.json file in your project root:

1
2
3
4
5

{
"require": {

"twig/twig": "1.*"
}

}

3. Install via Composer

1 php composer.phar install

If you want to learn more about Composer, the composer.json file syntax and its usage, you can
read the online documentation1.

Installing from the tarball release

1. Download the most recent tarball from the download page2

1. http://getcomposer.org/doc

PDF brought to you by
generated on March 13, 2014

Chapter 80: Installation | 155

http://sensiolabs.com

Listing 80-4

Listing 80-5

2. Unpack the tarball
3. Move the files somewhere in your project

Installing the development version

1. Install Git
2. git clone git://github.com/fabpot/Twig.git

Installing the PEAR package

1. Install PEAR
2. pear channel-discover pear.twig-project.org
3. pear install twig/Twig (or pear install twig/Twig-beta)

Installing the C extension
New in version 1.4: The C extension was added in Twig 1.4.

Twig comes with a C extension that enhances the performance of the Twig runtime engine.

You can install it via PEAR:
1. Install PEAR
2. pear channel-discover pear.twig-project.org
3. pear install twig/CTwig (or pear install twig/CTwig-beta)

Or manually like any other PHP extension:

1
2
3
4
5

$ cd ext/twig
$ phpize
$./configure
$ make
$ make install

For Windows:
1. Setup the build environment following the PHP documentation3

2. Put Twig's C extension source code into C:\php-sdk\phpdev\vcXX\x86\php-source-
directory\ext\twig

3. Use the configure --disable-all --enable-cli --enable-twig=shared command instead
of step 14

4. nmake
5. Copy the C:\php-sdk\phpdev\vcXX\x86\php-source-

directory\Release_TS\php_twig.dll file to your PHP setup.

For Windows ZendServer, TS is not enabled as mentionned in Zend Server FAQ.

You have to use configure --disable-all --disable-zts --enable-cli --enable-twig=shared to be able to
build the twig C extension for ZendServer.

The built DLL will be available in C:\php-sdk\phpdev\vcXX\x86\php-source-directory\Release

Finally, enable the extension in your php.ini configuration file:

2. https://github.com/fabpot/Twig/tags

3. https://wiki.php.net/internals/windows/stepbystepbuild

PDF brought to you by
generated on March 13, 2014

Chapter 80: Installation | 156

http://www.zend.com/en/products/server/faq#faqD6
http://sensiolabs.com

1
2

extension=twig.so #For Unix systems
extension=php_twig.dll #For Windows systems

And from now on, Twig will automatically compile your templates to take advantage of the C extension.
Note that this extension does not replace the PHP code but only provides an optimized version of the
Twig_Template::getAttribute() method.

PDF brought to you by
generated on March 13, 2014

Chapter 80: Installation | 157

http://sensiolabs.com

Chapter 81

Deprecated Features

This document lists all deprecated features in Twig. Deprecated features are kept for backward
compatibility and removed in the next major release (a feature that was deprecated in Twig 1.x is
removed in Twig 2.0).

Token Parsers
• As of Twig 1.x, the token parser broker sub-system is deprecated. The following class and

interface will be removed in 2.0:

• Twig_TokenParserBrokerInterface
• Twig_TokenParserBroker

Extensions
• As of Twig 1.x, the ability to remove an extension is deprecated and the

Twig_Environment::removeExtension() method will be removed in 2.0.

PEAR
PEAR support will be discontinued in Twig 2.0, and no PEAR packages will be provided. Use Composer
instead.

Filters
• As of Twig 1.x, use Twig_SimpleFilter to add a filter. The following classes and interfaces

will be removed in 2.0:

• Twig_FilterInterface
• Twig_FilterCallableInterface

PDF brought to you by
generated on March 13, 2014

Chapter 81: Deprecated Features | 158

http://sensiolabs.com

• Twig_Filter
• Twig_Filter_Function
• Twig_Filter_Method
• Twig_Filter_Node

• As of Twig 2.x, the Twig_SimpleFilter class is deprecated and will be removed in Twig 3.x
(use Twig_Filter instead). In Twig 2.x, Twig_SimpleFilter is just an alias for Twig_Filter.

Functions
• As of Twig 1.x, use Twig_SimpleFunction to add a function. The following classes and

interfaces will be removed in 2.0:

• Twig_FunctionInterface
• Twig_FunctionCallableInterface
• Twig_Function
• Twig_Function_Function
• Twig_Function_Method
• Twig_Function_Node

• As of Twig 2.x, the Twig_SimpleFunction class is deprecated and will be removed in Twig
3.x (use Twig_Function instead). In Twig 2.x, Twig_SimpleFunction is just an alias for
Twig_Function.

Tests
• As of Twig 1.x, use Twig_SimpleTest to add a test. The following classes and interfaces will

be removed in 2.0:

• Twig_TestInterface
• Twig_TestCallableInterface
• Twig_Test
• Twig_Test_Function
• Twig_Test_Method
• Twig_Test_Node

• As of Twig 2.x, the Twig_SimpleTest class is deprecated and will be removed in Twig 3.x (use
Twig_Test instead). In Twig 2.x, Twig_SimpleTest is just an alias for Twig_Test.

• The sameas and divisibleby tests are deprecated in favor of same as and divisible by
respectively.

Interfaces
• As of Twig 2.x, the following interfaces are deprecated and empty (they will be removed in

Twig 3.0):
• Twig_CompilerInterface (use Twig_Compiler instead)
• Twig_LexerInterface (use Twig_Lexer instead)
• Twig_NodeInterface (use Twig_Node instead)
• Twig_ParserInterface (use Twig_Parser instead)
• Twig_ExistsLoaderInterface (merged with Twig_LoaderInterface)

PDF brought to you by
generated on March 13, 2014

Chapter 81: Deprecated Features | 159

http://sensiolabs.com

• Twig_TemplateInterface (use Twig_Template instead, and use those constants
Twig_Template::ANY_CALL, Twig_Template::ARRAY_CALL,
Twig_Template::METHOD_CALL)

Globals
• As of Twig 2.x, the ability to register a global variable after the runtime or the extensions have

been initialized is not possible anymore (but changing the value of an already registered global
is possible).

PDF brought to you by
generated on March 13, 2014

Chapter 81: Deprecated Features | 160

http://sensiolabs.com

	The Twig Book generated on March 13, 2014
	

	Contents at a Glance
	Introduction
	Prerequisites
	Installation
	Basic API Usage

	Twig for Template Designers
	Synopsis
	IDEs Integration
	Variables
	Global Variables
	Setting Variables

	Filters
	Functions
	Named Arguments
	Control Structure
	Comments
	Including other Templates
	Template Inheritance
	HTML Escaping
	Working with Manual Escaping
	Working with Automatic Escaping

	Escaping
	Macros
	Expressions
	Literals
	Math
	Logic
	Comparisons
	Containment Operator
	Test Operator
	Other Operators
	String Interpolation

	Whitespace Control
	Extensions

	Twig for Developers
	Basics
	Environment Options
	Loaders
	Compilation Cache
	Built-in Loaders
	Twig_Loader_Filesystem
	Twig_Loader_String
	Twig_Loader_Array
	Twig_Loader_Chain

	Create your own Loader

	Using Extensions
	Built-in Extensions
	Core Extension
	Escaper Extension
	Sandbox Extension
	Optimizer Extension

	Exceptions

	Extending Twig
	Globals
	Filters
	Environment-aware Filters
	Context-aware Filters
	Automatic Escaping
	Dynamic Filters

	Functions
	Tests
	Tags
	Registering a new tag
	Defining a Token Parser
	Defining a Node

	Creating an Extension
	Globals
	Functions
	Filters
	Tags
	Operators
	Tests

	Overloading
	Testing an Extension
	Functional Tests
	Node Tests

	Twig Internals
	How does Twig work?
	The Lexer
	The Parser
	The Compiler

	Recipes
	Making a Layout conditional
	Making an Include dynamic
	Overriding a Template that also extends itself
	Customizing the Syntax
	Using dynamic Object Properties
	Accessing the parent Context in Nested Loops
	Defining undefined Functions and Filters on the Fly
	Validating the Template Syntax
	Refreshing modified Templates when APC is enabled and apc.stat = 0
	Reusing a stateful Node Visitor
	Using the Template name to set the default Escaping Strategy
	Using a Database to store Templates
	Using different Template Sources

	Coding Standards
	autoescape
	block
	filter
	do
	embed
	extends
	Child Template
	Parent Blocks
	Named Block End-Tags
	Block Nesting and Scope
	Block Shortcuts
	Dynamic Inheritance
	Conditional Inheritance
	How blocks work?

	flush
	for
	The loop variable
	Adding a condition
	The else Clause
	Iterating over Keys
	Iterating over Keys and Values
	Iterating over a Subset

	from
	if
	import
	include
	macro
	sandbox
	set
	spaceless
	use
	verbatim
	abs
	batch
	capitalize
	convert_encoding
	Arguments

	date
	Timezone
	Arguments

	date_modify
	Arguments

	default
	Arguments

	escape
	Custom Escapers
	Arguments

	first
	format
	join
	Arguments

	json_encode
	Arguments

	keys
	last
	length
	lower
	nl2br
	number_format
	Arguments

	merge
	upper
	raw
	replace
	Arguments

	reverse
	Arguments

	round
	Arguments

	slice
	Arguments

	sort
	split
	Arguments

	striptags
	title
	trim
	Arguments

	url_encode
	attribute
	block
	constant
	cycle
	Arguments

	date
	Arguments

	dump
	Arguments

	include
	Arguments

	max
	min
	parent
	random
	Arguments

	range
	Arguments

	source
	Arguments

	template_from_string
	Arguments

	constant
	defined
	divisible by
	empty
	even
	iterable
	null
	odd
	same as
	Installation
	Installing the Twig PHP package
	Installing via Composer (recommended)
	Installing from the tarball release
	Installing the development version
	Installing the PEAR package

	Installing the C extension

	Deprecated Features
	Token Parsers
	Extensions
	PEAR
	Filters
	Functions
	Tests
	Interfaces
	Globals

